These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29744843)

  • 1. Biogelx: Cell Culture on Self-Assembling Peptide Gels.
    Harper MM; Connolly ML; Goldie L; Irvine EJ; Shaw JE; Jayawarna V; Richardson SM; Dalby MJ; Lightbody D; Ulijn RV
    Methods Mol Biol; 2018; 1777():283-303. PubMed ID: 29744843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introducing chemical functionality in Fmoc-peptide gels for cell culture.
    Jayawarna V; Richardson SM; Hirst AR; Hodson NW; Saiani A; Gough JE; Ulijn RV
    Acta Biomater; 2009 Mar; 5(3):934-43. PubMed ID: 19249724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchically structured hydrogels utilizing multifunctional assembling peptides for 3D cell culture.
    Hilderbrand AM; Ford EM; Guo C; Sloppy JD; Kloxin AM
    Biomater Sci; 2020 Mar; 8(5):1256-1269. PubMed ID: 31854388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Self-Assembling Peptide-Based Hydrogels for Regenerative Medicine Using Solid-Phase Peptide Synthesis.
    Thomas Pashuck E
    Methods Mol Biol; 2018; 1758():177-192. PubMed ID: 29679331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications.
    Koutsopoulos S
    J Biomed Mater Res A; 2016 Apr; 104(4):1002-16. PubMed ID: 26707893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable mechanical properties of ultrasmall peptide hydrogels by crosslinking and functionalization to achieve the 3D distribution of cells.
    Seow WY; Hauser CA
    Adv Healthc Mater; 2013 Sep; 2(9):1219-23. PubMed ID: 23495200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances of self-assembling peptide-based hydrogels for biomedical applications.
    Li J; Xing R; Bai S; Yan X
    Soft Matter; 2019 Feb; 15(8):1704-1715. PubMed ID: 30724947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Culture of Mesenchymal Stem Cells in Alginate Hydrogels.
    Bidarra SJ; Barrias CC
    Methods Mol Biol; 2019; 2002():165-180. PubMed ID: 30244438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide-Based Molecular Hydrogels as Supramolecular Protein Mimics.
    Singh N; Kumar M; Miravet JF; Ulijn RV; Escuder B
    Chemistry; 2017 Jan; 23(5):981-993. PubMed ID: 27530095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing well-defined photopolymerized synthetic matrices for three-dimensional culture and differentiation of induced pluripotent stem cells.
    Ovadia EM; Colby DW; Kloxin AM
    Biomater Sci; 2018 May; 6(6):1358-1370. PubMed ID: 29675520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering.
    Tang JD; Mura C; Lampe KJ
    J Am Chem Soc; 2019 Mar; 141(12):4886-4899. PubMed ID: 30830776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogels with an embossed surface: An all-in-one platform for mass production and culture of human adipose-derived stem cell spheroids.
    Kim SJ; Park J; Byun H; Park YW; Major LG; Lee DY; Choi YS; Shin H
    Biomaterials; 2019 Jan; 188():198-212. PubMed ID: 30368228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [PREPARATION AND BIOCOMPATIBILITY EVALUATION OF A FUNCTIONAL SELF-ASSEMBLING PEPTIDE NANOFIBER HYDROGEL DESIGNED WITH LINKING THE SHORT FUNCTIONAL MOTIF OF BONE MORPHOGENETIC PROTEIN 7].
    Liu L; Wu Y; Tao H; Jia Z; Li X; Wang D; He Q; Ruan D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Apr; 30(4):491-8. PubMed ID: 27411281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the Mechanical Rigidity of Hyaluronic Acid by Integration of a Supramolecular Peptide Matrix.
    Aviv M; Halperin-Sternfeld M; Grigoriants I; Buzhansky L; Mironi-Harpaz I; Seliktar D; Einav S; Nevo Z; Adler-Abramovich L
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):41883-41891. PubMed ID: 30211538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Cell Entrapment as a Function of the Weight Percent of Peptide-Amphiphile Hydrogels.
    Scott CM; Forster CL; Kokkoli E
    Langmuir; 2015 Jun; 31(22):6122-9. PubMed ID: 25970351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and primary characterization of self-assembled peptide-based hydrogels.
    Nagarkar RP; Schneider JP
    Methods Mol Biol; 2008; 474():61-77. PubMed ID: 19031061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational molecular design of complementary self-assembling peptide hydrogels.
    Kyle S; Felton SH; McPherson MJ; Aggeli A; Ingham E
    Adv Healthc Mater; 2012 Sep; 1(5):640-5. PubMed ID: 23184800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene oxide containing self-assembling peptide hybrid hydrogels as a potential 3D injectable cell delivery platform for intervertebral disc repair applications.
    Ligorio C; Zhou M; Wychowaniec JK; Zhu X; Bartlam C; Miller AF; Vijayaraghavan A; Hoyland JA; Saiani A
    Acta Biomater; 2019 Jul; 92():92-103. PubMed ID: 31091473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models.
    Tam RY; Smith LJ; Shoichet MS
    Acc Chem Res; 2017 Apr; 50(4):703-713. PubMed ID: 28345876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide-directed self-assembly of hydrogels.
    Kopecek J; Yang J
    Acta Biomater; 2009 Mar; 5(3):805-16. PubMed ID: 18952513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.