These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 29744880)
1. Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes, differing in drought sensitivity. Sehgal A; Sita K; Bhandari K; Kumar S; Kumar J; Vara Prasad PV; Siddique KHM; Nayyar H Plant Cell Environ; 2019 Jan; 42(1):198-211. PubMed ID: 29744880 [TBL] [Abstract][Full Text] [Related]
2. Impact of heat stress during seed filling on seed quality and seed yield in lentil (Lens culinaris Medikus) genotypes. Sita K; Sehgal A; Bhandari K; Kumar J; Kumar S; Singh S; Siddique KH; Nayyar H J Sci Food Agric; 2018 Oct; 98(13):5134-5141. PubMed ID: 29635707 [TBL] [Abstract][Full Text] [Related]
3. Effects of Drought, Heat and Their Interaction on the Growth, Yield and Photosynthetic Function of Lentil ( Sehgal A; Sita K; Kumar J; Kumar S; Singh S; Siddique KHM; Nayyar H Front Plant Sci; 2017; 8():1776. PubMed ID: 29089954 [TBL] [Abstract][Full Text] [Related]
4. Heat Priming of Lentil ( Bhardwaj A; Sita K; Sehgal A; Bhandari K; Kumar S; Prasad PVV; Jha U; Kumar J; Siddique KHM; Nayyar H Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072403 [TBL] [Abstract][Full Text] [Related]
5. Comparative RNA-seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under short- and long-term water deficits. Morgil H; Tardu M; Cevahir G; Kavakli İH Funct Integr Genomics; 2019 Sep; 19(5):715-727. PubMed ID: 31001704 [TBL] [Abstract][Full Text] [Related]
6. The study of seed yield and seed yield components of lentil (Lens culinaris Medik) under normal and drought stress conditions. Salehi M; Haghnazari A; Shekari F; Faramarzi A Pak J Biol Sci; 2008 Mar; 11(5):758-62. PubMed ID: 18819573 [TBL] [Abstract][Full Text] [Related]
7. Understanding the effect of heat stress during seed filling on nutritional composition and seed yield in chickpea (Cicer arietinum L.). Devi P; Awasthi R; Jha U; Sharma KD; Prasad PVV; Siddique KHM; Roorkiwal M; Nayyar H Sci Rep; 2023 Sep; 13(1):15450. PubMed ID: 37723187 [TBL] [Abstract][Full Text] [Related]
8. Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Awasthi R; Kaushal N; Vadez V; Turner NC; Berger J; Siddique KHM; Nayyar H Funct Plant Biol; 2014 Oct; 41(11):1148-1167. PubMed ID: 32481065 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. Singh D; Singh CK; Taunk J; Tomar RS; Chaturvedi AK; Gaikwad K; Pal M BMC Genomics; 2017 Feb; 18(1):206. PubMed ID: 28241862 [TBL] [Abstract][Full Text] [Related]
10. Heat and Drought Stress Impact on Phenology, Grain Yield, and Nutritional Quality of Lentil ( Choukri H; Hejjaoui K; El-Baouchi A; El Haddad N; Smouni A; Maalouf F; Thavarajah D; Kumar S Front Nutr; 2020; 7():596307. PubMed ID: 33330596 [TBL] [Abstract][Full Text] [Related]
11. The use of infrared thermal imaging as a non-destructive screening tool for identifying drought-tolerant lentil genotypes. Biju S; Fuentes S; Gupta D Plant Physiol Biochem; 2018 Jun; 127():11-24. PubMed ID: 29544209 [TBL] [Abstract][Full Text] [Related]
12. ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. Seiler C; Harshavardhan VT; Rajesh K; Reddy PS; Strickert M; Rolletschek H; Scholz U; Wobus U; Sreenivasulu N J Exp Bot; 2011 May; 62(8):2615-32. PubMed ID: 21289079 [TBL] [Abstract][Full Text] [Related]
14. Effect of Drought Stress during Soybean R2-R6 Growth Stages on Sucrose Metabolism in Leaf and Seed. Du Y; Zhao Q; Chen L; Yao X; Zhang H; Wu J; Xie F Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963537 [TBL] [Abstract][Full Text] [Related]
15. Leaf photosynthesis and senescence in heated and droughted field-grown soybean with contrasting seed protein concentration. Ergo VV; Veas RE; Vega CRC; Lascano R; Carrera CS Plant Physiol Biochem; 2021 Sep; 166():437-447. PubMed ID: 34157606 [TBL] [Abstract][Full Text] [Related]
16. Genome wide transcriptome analysis reveals vital role of heat responsive genes in regulatory mechanisms of lentil (Lens culinaris Medikus). Singh D; Singh CK; Taunk J; Jadon V; Pal M; Gaikwad K Sci Rep; 2019 Sep; 9(1):12976. PubMed ID: 31506558 [TBL] [Abstract][Full Text] [Related]
17. Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system. Biju S; Fuentes S; Gupta D Plant Physiol Biochem; 2017 Oct; 119():250-264. PubMed ID: 28917144 [TBL] [Abstract][Full Text] [Related]
18. Securing reproductive function in mungbean grown under high temperature environment with exogenous application of proline. Priya M; Sharma L; Singh I; Bains TS; Siddique KHM; H B; Nair RM; Nayyar H Plant Physiol Biochem; 2019 Jul; 140():136-150. PubMed ID: 31103796 [TBL] [Abstract][Full Text] [Related]
19. Investigating the influence of elevated temperature on nutritional and yield characteristics of mung bean ( Priya M; Bhardwaj A; Jha UC; HanumanthaRao B; Prasad PVV; Sharma KD; Siddique KHM; Nayyar H Front Plant Sci; 2023; 14():1233954. PubMed ID: 37810386 [TBL] [Abstract][Full Text] [Related]
20. Silicon modulates nitro-oxidative homeostasis along with the antioxidant metabolism to promote drought stress tolerance in lentil plants. Biju S; Fuentes S; Gupta D Physiol Plant; 2021 Jun; 172(2):1382-1398. PubMed ID: 33887059 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]