BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29744888)

  • 1. Gene-edited plants on the plate: the 'CRISPR cabbage story'.
    Jansson S
    Physiol Plant; 2018 Dec; 164(4):396-405. PubMed ID: 29744888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cpf1: A New Tool for Plant Genome Editing.
    Zaidi SS; Mahfouz MM; Mansoor S
    Trends Plant Sci; 2017 Jul; 22(7):550-553. PubMed ID: 28532598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice.
    Meng X; Hu X; Liu Q; Song X; Gao C; Li J; Wang K
    Sci China Life Sci; 2018 Jan; 61(1):122-125. PubMed ID: 29285711
    [No Abstract]   [Full Text] [Related]  

  • 5. Cutting Edge Genetics: CRISPR/Cas9 Editing of Plant Genomes.
    Soyars CL; Peterson BA; Burr CA; Nimchuk ZL
    Plant Cell Physiol; 2018 Aug; 59(8):1608-1620. PubMed ID: 29912402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-S: an active interference element for a rapid and inexpensive selection of genome-edited, transgene-free rice plants.
    Lu HP; Liu SM; Xu SL; Chen WY; Zhou X; Tan YY; Huang JZ; Shu QY
    Plant Biotechnol J; 2017 Nov; 15(11):1371-1373. PubMed ID: 28688132
    [No Abstract]   [Full Text] [Related]  

  • 7. CRISPR Crops: Plant Genome Editing Toward Disease Resistance.
    Langner T; Kamoun S; Belhaj K
    Annu Rev Phytopathol; 2018 Aug; 56():479-512. PubMed ID: 29975607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolving Regulatory Landscape for Genome-Edited Plants.
    Zannoni L
    CRISPR J; 2019 Feb; 2():3-8. PubMed ID: 31021233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A critical look on CRISPR-based genome editing in plants.
    Ahmad N; Rahman MU; Mukhtar Z; Zafar Y; Zhang B
    J Cell Physiol; 2020 Feb; 235(2):666-682. PubMed ID: 31317541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system.
    Wang P; Zhang J; Sun L; Ma Y; Xu J; Liang S; Deng J; Tan J; Zhang Q; Tu L; Daniell H; Jin S; Zhang X
    Plant Biotechnol J; 2018 Jan; 16(1):137-150. PubMed ID: 28499063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research.
    Liu D; Hu R; Palla KJ; Tuskan GA; Yang X
    Curr Opin Plant Biol; 2016 Apr; 30():70-7. PubMed ID: 26896588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristic and inheritance analysis of targeted mutagenesis mediated by genome editing in rice.
    Tang L; Li YK; Zhang D; Mao BG; Lv QM; Hu YY; Shao Y; Peng Y; Zhao BR; Xia ST
    Yi Chuan; 2016 Aug; 38(8):746-55. PubMed ID: 27531613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops.
    Khatodia S; Bhatotia K; Tuteja N
    Bioengineered; 2017 May; 8(3):274-279. PubMed ID: 28581909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion.
    Zong Y; Wang Y; Li C; Zhang R; Chen K; Ran Y; Qiu JL; Wang D; Gao C
    Nat Biotechnol; 2017 May; 35(5):438-440. PubMed ID: 28244994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas in Arabidopsis: overcoming challenges to accelerate improvements in crop photosynthetic efficiencies.
    Khumsupan P; Donovan S; McCormick AJ
    Physiol Plant; 2019 May; 166(1):428-437. PubMed ID: 30706492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas9-Mediated Gene Editing of
    Neequaye M; Stavnstrup S; Harwood W; Lawrenson T; Hundleby P; Irwin J; Troncoso-Rey P; Saha S; Traka MH; Mithen R; Østergaard L
    CRISPR J; 2021 Jun; 4(3):416-426. PubMed ID: 34152214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.