These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

500 related articles for article (PubMed ID: 29745137)

  • 41. Effects of Climate Change on Land Cover Change and Vegetation Dynamics in Xinjiang, China.
    Yu H; Bian Z; Mu S; Yuan J; Chen F
    Int J Environ Res Public Health; 2020 Jul; 17(13):. PubMed ID: 32640654
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Changes in agro-climatic indices related to temperature in Central Chile.
    Piticar A
    Int J Biometeorol; 2019 Apr; 63(4):499-510. PubMed ID: 30706207
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multifaceted responses of vegetation to average and extreme climate change over global drylands.
    He L; Guo J; Yang W; Jiang Q; Chen L; Tang K
    Sci Total Environ; 2023 Feb; 858(Pt 2):159942. PubMed ID: 36343828
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Grassland productivity response to droughts in northern China monitored by satellite-based solar-induced chlorophyll fluorescence.
    Wang X; Pan S; Pan N; Pan P
    Sci Total Environ; 2022 Jul; 830():154550. PubMed ID: 35302027
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Climate extremes drive the phenology of a dominant species in meadow steppe under gradual warming.
    Hongchao J; Guang Y; Xiaomin L; Bingrui J; Zhenzhu X; Yuhui W
    Sci Total Environ; 2023 Apr; 869():161687. PubMed ID: 36681336
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessment of trends in climatic extremes from observational data in the Kashmir basin, NW Himalaya.
    Ahsan S; Bhat MS; Alam A; Ahmed N; Farooq H; Ahmad B
    Environ Monit Assess; 2021 Sep; 193(10):649. PubMed ID: 34523031
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Spatial and temporal variability of climatic potential productivity in Yunnan Province, China.].
    Li ZJ; Duan CC; Jin LL; Hu XQ; Li B; Yang HY
    Ying Yong Sheng Tai Xue Bao; 2019 Jul; 30(7):2181-2190. PubMed ID: 31418220
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Correlation analysis on normalized difference vegetation index (NDVI) of different vegetations and climatic factors in Southwest China].
    Zhang YD; Zhang XH; Liu SR
    Ying Yong Sheng Tai Xue Bao; 2011 Feb; 22(2):323-30. PubMed ID: 21608242
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differential responses of vegetation phenology to climatic elements during extreme events on the Chinese loess plateau.
    Ji Z; Wang L
    Sci Total Environ; 2024 Jul; 933():173146. PubMed ID: 38735338
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Are reanalysis data useful for calculating climate indices over South America?
    Dufek AS; Ambrizzi T; da Rocha RP
    Ann N Y Acad Sci; 2008 Dec; 1146():87-104. PubMed ID: 19076413
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigating variations of precipitation concentration in the transitional zone between Qinling Mountains and Loess Plateau in China: Implications for regional impacts of AO and WPSH.
    Li C; Zhang H; Singh VP; Fan J; Wei X; Yang J; Wei X
    PLoS One; 2020; 15(11):e0238709. PubMed ID: 33151946
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Attribution and projections of temperature extreme trends in South America based on CMIP5 models.
    Rusticucci M; Zazulie N
    Ann N Y Acad Sci; 2021 Nov; 1504(1):154-166. PubMed ID: 33763891
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Temporal and spatial variations of annual precipitation and meteorological drought in China during 1951-2018].
    Lu C; Ma L; Liu TX; Huang X
    Ying Yong Sheng Tai Xue Bao; 2022 Jun; 33(6):1572-1580. PubMed ID: 35729135
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland.
    Cong N; Shen M; Yang W; Yang Z; Zhang G; Piao S
    Int J Biometeorol; 2017 Aug; 61(8):1433-1444. PubMed ID: 28247125
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of the dynamic vegetation on climate extremes during the wheat growing period over China.
    Dong S; Shi Y
    Sci Total Environ; 2022 May; 819():153079. PubMed ID: 35033571
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Characteristics and adaptation of seasonal drought in southern China under the background of global climate change. IV. Spatiotemporal characteristics of drought for maize based on crop water deficit index].
    Sui Y; Huang WH; Yang XG; Li MS
    Ying Yong Sheng Tai Xue Bao; 2013 Sep; 24(9):2590-8. PubMed ID: 24417119
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Climatological aspects and changes in temperature and precipitation extremes in Viçosa-Minas Gerais.
    Avila-Diaz A; Justino F; Lindemann DS; Rodrigues JM; Ferreira GR
    An Acad Bras Cienc; 2020; 92(2):e20190388. PubMed ID: 32638870
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spatiotemporal nexus between vegetation change and extreme climatic indices and their possible causes of change.
    Islam ARMT; Islam HMT; Shahid S; Khatun MK; Ali MM; Rahman MS; Ibrahim SM; Almoajel AM
    J Environ Manage; 2021 Jul; 289():112505. PubMed ID: 33819656
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spatial-temporal patterns of high-temperature and drought during the maize growing season under current and future climate changes in northeast China.
    Li E; Zhao J; Zhang W; Yang X
    J Sci Food Agric; 2023 Sep; 103(12):5709-5716. PubMed ID: 37088942
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Time-lag and accumulation responses of vegetation growth to average and extreme precipitation and temperature events in China between 2001 and 2020.
    Liu M; Zhai H; Zhang X; Dong X; Hu J; Ma J; Sun W
    Sci Total Environ; 2024 Oct; 945():174084. PubMed ID: 38906303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.