These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29745224)

  • 41. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Temperature-Sensitive Structure Evolution of Lithium-Manganese-Rich Layered Oxides for Lithium-Ion Batteries.
    Yu H; So YG; Ren Y; Wu T; Guo G; Xiao R; Lu J; Li H; Yang Y; Zhou H; Wang R; Amine K; Ikuhara Y
    J Am Chem Soc; 2018 Nov; 140(45):15279-15289. PubMed ID: 30347983
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Two-dimensional transition-metal oxide monolayers as cathode materials for Li and Na ion batteries.
    Leong CC; Pan H; Ho SK
    Phys Chem Chem Phys; 2016 Mar; 18(10):7527-34. PubMed ID: 26903042
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Understanding the effect of an in situ generated and integrated spinel phase on a layered Li-rich cathode material using a non-stoichiometric strategy.
    Zhang J; Gao R; Sun L; Li Z; Zhang H; Hu Z; Liu X
    Phys Chem Chem Phys; 2016 Sep; 18(36):25711-25720. PubMed ID: 27711565
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Accelerating the activation of Li
    Huang C; Fang ZQ; Wang ZJ; Zhao JW; Zhao SX; Ci LJ
    Nanoscale; 2021 Mar; 13(9):4921-4930. PubMed ID: 33625417
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural and Electrochemical Kinetic Properties of 0.5Li
    Kaewmala S; Limphirat W; Yordsri V; Kim H; Muhammad S; Yoon WS; Srilomsak S; Limthongkul P; Meethong N
    Sci Rep; 2019 Jan; 9(1):427. PubMed ID: 30674922
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computational Screening for Design of Optimal Coating Materials to Suppress Gas Evolution in Li-Ion Battery Cathodes.
    Min K; Seo SW; Choi B; Park K; Cho E
    ACS Appl Mater Interfaces; 2017 May; 9(21):17822-17834. PubMed ID: 28472880
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrochemical and structural effects of in situ Li2O extraction from Li2MnO3 for Li-Ion batteries.
    Jacob C; Jian J; Su Q; Verkhoturov S; Guillemette R; Wang H
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2433-8. PubMed ID: 25569729
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries.
    Shi JL; Zhang JN; He M; Zhang XD; Yin YX; Li H; Guo YG; Gu L; Wan LJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20138-46. PubMed ID: 27437556
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries.
    Qiu B; Zhang M; Wu L; Wang J; Xia Y; Qian D; Liu H; Hy S; Chen Y; An K; Zhu Y; Liu Z; Meng YS
    Nat Commun; 2016 Jul; 7():12108. PubMed ID: 27363944
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel preparation of core-shell electrode materials via evaporation-induced self-assembly of nanoparticles for advanced Li-ion batteries.
    Xie Z; Ellis S; Xu W; Dye D; Zhao J; Wang Y
    Chem Commun (Camb); 2015 Oct; 51(81):15000-3. PubMed ID: 26313024
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries.
    Tao H; Fan LZ; Song WL; Wu M; He X; Qu X
    Nanoscale; 2014 Mar; 6(6):3138-42. PubMed ID: 24496138
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Li
    Kaewmala S; Chantrasuwan P; Wiriya N; Srilomsak S; Limphirat W; Limthongkul P; Meethong N
    Sci Rep; 2017 Oct; 7(1):13196. PubMed ID: 29038447
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrothermal control of the lithium-rich Li
    Pulido R; Naveas N; Graber T; Martin-Palma RJ; Agulló-Rueda F; Brito I; Morales C; Soriano L; Pascual L; Marini C; Hernández-Montelongo J; Manso Silván M
    Dalton Trans; 2021 Aug; 50(31):10765-10778. PubMed ID: 34286776
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Excess-Li Localization Triggers Chemical Irreversibility in Li- and Mn-Rich Layered Oxides.
    Hwang J; Myeong S; Jin W; Jang H; Nam G; Yoon M; Kim SH; Joo SH; Kwak SK; Kim MG; Cho J
    Adv Mater; 2020 Aug; 32(34):e2001944. PubMed ID: 32656860
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance.
    Fu C; Li G; Luo D; Li Q; Fan J; Li L
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15822-31. PubMed ID: 25203668
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phase Transformation Behavior and Stability of LiNiO
    de Biasi L; Schiele A; Roca-Ayats M; Garcia G; Brezesinski T; Hartmann P; Janek J
    ChemSusChem; 2019 May; 12(10):2240-2250. PubMed ID: 30839177
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lithium-Rich Layered Oxide Li1.18 Ni0.15 Co0.15 Mn0.52 O2 as the Cathode Material for Hybrid Sodium-Ion Batteries.
    Wei Z; Gao Y; Wang L; Zhang C; Bian X; Fu Q; Wang C; Wei Y; Du F; Chen G
    Chemistry; 2016 Aug; 22(33):11610-6. PubMed ID: 27320123
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of Ni/Mn distributions on the structure and electrochemical properties of Ni-rich cathode materials.
    Sun Y; Zhang Z; Li H; Yang T; Zhang H; Shi X; Song D; Zhang L
    Dalton Trans; 2018 Nov; 47(46):16651-16659. PubMed ID: 30426127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.