These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29745413)

  • 41. Quantifying individual (anti)bonding molecular orbitals' contributions to chemical bonding.
    de Lange JH; van Niekerk DME; Cukrowski I
    Phys Chem Chem Phys; 2019 Oct; 21(37):20988-20998. PubMed ID: 31528893
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Peptide Bond: Resonance Increases Bond Order and Complicates Fragmentation.
    Fedorov DG
    Chemphyschem; 2024 Jul; 25(14):e202400170. PubMed ID: 38749916
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Understanding glycine conformation through molecular orbitals.
    Falzon CT; Wang F
    J Chem Phys; 2005 Dec; 123(21):214307. PubMed ID: 16356048
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Occupied-Virtual Orbitals for Chemical Valence with Applications to Charge Transfer in Energy Decomposition Analysis.
    Shen H; Head-Gordon M
    J Phys Chem A; 2024 Jul; 128(26):5202-5211. PubMed ID: 38900728
    [TBL] [Abstract][Full Text] [Related]  

  • 45. One-electron images in real space: natural adaptive orbitals.
    Menéndez M; Álvarez Boto R; Francisco E; Martín Pendás Á
    J Comput Chem; 2015 Apr; 36(11):833-43. PubMed ID: 25691432
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Restoring orbital thinking from real space descriptions: bonding in classical and non-classical transition metal carbonyls.
    Tiana D; Francisco E; Blanco MA; Macchi P; Sironi A; Martín Pendás A
    Phys Chem Chem Phys; 2011 Mar; 13(11):5068-77. PubMed ID: 21298138
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A challenge to chemical intuition: donor-acceptor interactions in H3B-L and H2B+-L (L=CO; EC5H5, E=N-Bi).
    Erhardt S; Frenking G
    Chemistry; 2006 Jun; 12(17):4620-9. PubMed ID: 16598798
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bond orbitals from chemical valence theory.
    Michalak A; Mitoraj M; Ziegler T
    J Phys Chem A; 2008 Mar; 112(9):1933-9. PubMed ID: 18266342
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Is there any fundamental difference between ionic, covalent, and others types of bond? A canonical perspective on the question.
    Walton JR; Rivera-Rivera LA; Lucchese RR; Bevan JW
    Phys Chem Chem Phys; 2017 Jun; 19(24):15864-15869. PubMed ID: 28589191
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Decomposition of Intermolecular Interaction Energies within the Local Pair Natural Orbital Coupled Cluster Framework.
    Schneider WB; Bistoni G; Sparta M; Saitow M; Riplinger C; Auer AA; Neese F
    J Chem Theory Comput; 2016 Oct; 12(10):4778-4792. PubMed ID: 27564403
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Valence bond perturbation theory. A valence bond method that incorporates perturbation theory.
    Chen Z; Song J; Shaik S; Hiberty PC; Wu W
    J Phys Chem A; 2009 Oct; 113(43):11560-9. PubMed ID: 19569658
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intramolecular interactions of L-phenylalanine: Valence ionization spectra and orbital momentum distributions of its fragment molecules.
    Ganesan A; Wang F; Falzon C
    J Comput Chem; 2011 Feb; 32(3):525-35. PubMed ID: 20806261
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Covalency in Highly Polar Bonds. Structure and Bonding of Methylalkalimetal Oligomers (CH3M)n (M = Li-Rb; n = 1, 4).
    Bickelhaupt FM; Solà M; Fonseca Guerra C
    J Chem Theory Comput; 2006 Jul; 2(4):965-80. PubMed ID: 26633056
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electronic structure and bonding of the dinuclear metal M
    Menacer R; May A; Belkhiri L; Mousser A
    J Mol Model; 2017 Nov; 23(12):358. PubMed ID: 29185066
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Symmetry and bonding in metalloporphyrins. A modern implementation for the bonding analyses of five- and six-coordinate high-spin iron(III)-porphyrin complexes through density functional calculation and NMR spectroscopy.
    Cheng RJ; Chen PY; Lovell T; Liu T; Noodleman L; Case DA
    J Am Chem Soc; 2003 Jun; 125(22):6774-83. PubMed ID: 12769588
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Theoretical and spectroscopic investigations of the bonding and reactivity of (RO)3M[triple bond]N molecules, where M = Cr, Mo, and W.
    Chen S; Chisholm MH; Davidson ER; English JB; Lichtenberger DL
    Inorg Chem; 2009 Feb; 48(3):828-37. PubMed ID: 19099428
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Maximally valent orbitals in systems with non-ideal bond-angles: atomic Wannier orbitals guided by the Mayer bond order.
    De J; N S S; Hossain M; Bhattacharjee J
    Phys Chem Chem Phys; 2023 Jan; 25(3):1717-1727. PubMed ID: 36562398
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The location of the chemical bond. Application of long covalent bond theory to the structure of silica.
    Miller SA
    Front Chem; 2023; 11():1123322. PubMed ID: 36874065
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of charge transfer effects in molecular complexes based on absolutely localized molecular orbitals.
    Khaliullin RZ; Bell AT; Head-Gordon M
    J Chem Phys; 2008 May; 128(18):184112. PubMed ID: 18532804
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Natural bond orbital analysis in the ONETEP code: applications to large protein systems.
    Lee LP; Cole DJ; Payne MC; Skylaris CK
    J Comput Chem; 2013 Mar; 34(6):429-44. PubMed ID: 23065758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.