These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 29745523)
1. [The effect of preload and support's stiffness on the performance of round window stimulation: a numerical analysis]. Zhang H; Liu H; Zhao Y; Rao Z; Yang J; Wang W Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2018 Apr; 35(2):191-197. PubMed ID: 29745523 [TBL] [Abstract][Full Text] [Related]
2. [Numerical analysis of the influence of otitis media on the hearing compensation performance of round-window stimulation]. Xue L; Liu H; Wang Z; Yang J; Yang S; Huang X; Zhang H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Oct; 36(5):745-754. PubMed ID: 31631622 [TBL] [Abstract][Full Text] [Related]
3. Effect of stimulation sites on the performance of electromagnetic middle ear implant: A finite element analysis. Liu H; Wang W; Zhao Y; Yang J; Yang S; Huang X; Liu W Comput Biol Med; 2020 Sep; 124():103918. PubMed ID: 32758680 [TBL] [Abstract][Full Text] [Related]
4. Research on coupling effects of actuator and round window membrane on reverse stimulation of human cochlea. Xue L; Liu H; Yang J; Liu S; Zhao Y; Huang X Proc Inst Mech Eng H; 2021 Apr; 235(4):447-458. PubMed ID: 33427056 [TBL] [Abstract][Full Text] [Related]
5. Analysis of design parameters of round-window stimulating type electromagnetic transducer by a nonlinear lumped parameter model of implanted human ear. Liu Z; Liu H; Wang J; Yang J; Hao J; Yang S Math Biosci Eng; 2022 Jan; 19(3):2453-2470. PubMed ID: 35240792 [TBL] [Abstract][Full Text] [Related]
6. Analysis of the influence of the transducer and its coupling layer on round window stimulation. Liu H; Xu D; Yang J; Yang S; Cheng G; Huang X Acta Bioeng Biomech; 2017; 19(2):103-111. PubMed ID: 28869639 [TBL] [Abstract][Full Text] [Related]
7. Influence of ossicular chain malformation on the performance of round-window stimulation: A finite element approach. Liu H; Zhang H; Yang J; Huang X; Liu W; Xue L Proc Inst Mech Eng H; 2019 May; 233(5):584-594. PubMed ID: 30919729 [TBL] [Abstract][Full Text] [Related]
8. Numerical Study and Optimization of a Novel Piezoelectric Transducer for a Round-Window Stimulating Type Middle-Ear Implant. Liu H; Wang H; Rao Z; Yang J; Yang S Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30634413 [TBL] [Abstract][Full Text] [Related]
9. Influence of middle ear disorder in round-window stimulation using a finite element human ear model. Zhou K; Liu H; Yang J; Zhao YU; Rao Z; Yang S Acta Bioeng Biomech; 2019; 21(1):3-12. PubMed ID: 31197272 [TBL] [Abstract][Full Text] [Related]
10. The Influence of Piezoelectric Transducer Stimulating Sites on the Performance of Implantable Middle Ear Hearing Devices: A Numerical Analysis. Liu H; Zhao Y; Yang J; Rao Z Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31739627 [TBL] [Abstract][Full Text] [Related]
11. Effects of design and coupling parameters on the performance of electromagnetic transducers in round-window stimulation. Zhao Y; Liu H; Yang J; Yang S; Liu W; Huang X J Acoust Soc Am; 2022 Jan; 151(1):609. PubMed ID: 35105032 [TBL] [Abstract][Full Text] [Related]
12. Mechanical Effects of Cochlear Implants on Residual Hearing Loss: A Finite Element Analysis. Lim J; Kim Y; Kim N IEEE Trans Biomed Eng; 2020 Nov; 67(11):3253-3261. PubMed ID: 32191879 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of Round Window Stimulation Performance in Otosclerosis Using Finite Element Modeling. Yang S; Xu D; Liu X Comput Math Methods Med; 2016; 2016():3603207. PubMed ID: 27034709 [TBL] [Abstract][Full Text] [Related]
14. Piezoelectric Actuator with Frequency Characteristics for a Middle-Ear Implant. Shin DH; Cho JH Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29795018 [TBL] [Abstract][Full Text] [Related]
15. Numerical evaluation of implantable hearing devices using a finite element model of human ear considering viscoelastic properties. Zhang J; Tian J; Ta N; Huang X; Rao Z Proc Inst Mech Eng H; 2016 Aug; 230(8):784-94. PubMed ID: 27276992 [TBL] [Abstract][Full Text] [Related]
16. Conditions for highly efficient and reproducible round-window stimulation in humans. Schraven SP; Hirt B; Goll E; Heyd A; Gummer AW; Zenner HP; Dalhoff E Audiol Neurootol; 2012; 17(2):133-8. PubMed ID: 22094646 [TBL] [Abstract][Full Text] [Related]
17. Modelling the effect of round window stiffness on residual hearing after cochlear implantation. Elliott SJ; Ni G; Verschuur CA Hear Res; 2016 Nov; 341():155-167. PubMed ID: 27586580 [TBL] [Abstract][Full Text] [Related]
18. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator. Maier H; Salcher R; Schwab B; Lenarz T Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731 [TBL] [Abstract][Full Text] [Related]
19. The design of a lumped parameter model considering the stimulus path of round window. Kim JH; Park MG; Wei Q; Seong KW; Lee JH Technol Health Care; 2021; 29(S1):49-56. PubMed ID: 33682744 [TBL] [Abstract][Full Text] [Related]
20. A three-dimensional finite element model of round window membrane vibration before and after stapedotomy surgery. Kwacz M; Marek P; Borkowski P; Mrówka M Biomech Model Mechanobiol; 2013 Nov; 12(6):1243-61. PubMed ID: 23462937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]