These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 29746473)
1. Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging. Zhang D; Zhou X; Zhang J; Lan Y; Xu C; Liang D PLoS One; 2018; 13(5):e0187470. PubMed ID: 29746473 [TBL] [Abstract][Full Text] [Related]
2. An Improved Crop Scouting Technique Incorporating Unmanned Aerial Vehicle-Assisted Multispectral Crop Imaging into Conventional Scouting Practice for Gummy Stem Blight in Watermelon. Kalischuk M; Paret ML; Freeman JH; Raj D; Da Silva S; Eubanks S; Wiggins DJ; Lollar M; Marois JJ; Mellinger HC; Das J Plant Dis; 2019 Jul; 103(7):1642-1650. PubMed ID: 31082305 [TBL] [Abstract][Full Text] [Related]
3. Applications of Unmanned Aerial Vehicle Based Imagery in Turfgrass Field Trials. Zhang J; Virk S; Porter W; Kenworthy K; Sullivan D; Schwartz B Front Plant Sci; 2019; 10():279. PubMed ID: 30930917 [TBL] [Abstract][Full Text] [Related]
4. A study on the evaluation of water-bloom using image processing. Choo Y; Kang G; Kim D; Lee S Environ Sci Pollut Res Int; 2018 Dec; 25(36):36775-36780. PubMed ID: 30421371 [TBL] [Abstract][Full Text] [Related]
5. Multispectral imaging and unmanned aerial systems for cotton plant phenotyping. Xu R; Li C; Paterson AH PLoS One; 2019; 14(2):e0205083. PubMed ID: 30811435 [TBL] [Abstract][Full Text] [Related]
6. A model for phenotyping crop fractional vegetation cover using imagery from unmanned aerial vehicles. Wan L; Zhu J; Du X; Zhang J; Han X; Zhou W; Li X; Liu J; Liang F; He Y; Cen H J Exp Bot; 2021 Jun; 72(13):4691-4707. PubMed ID: 33963382 [TBL] [Abstract][Full Text] [Related]
7. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice. Zheng H; Cheng T; Li D; Yao X; Tian Y; Cao W; Zhu Y Front Plant Sci; 2018; 9():936. PubMed ID: 30034405 [TBL] [Abstract][Full Text] [Related]
8. Identification of Rice Sheath Blight through Spectral Responses Using Hyperspectral Images. Lin F; Guo S; Tan C; Zhou X; Zhang D Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33147714 [TBL] [Abstract][Full Text] [Related]
9. Unmanned aerial systems-based remote sensing for monitoring sorghum growth and development. Shafian S; Rajan N; Schnell R; Bagavathiannan M; Valasek J; Shi Y; Olsenholler J PLoS One; 2018; 13(5):e0196605. PubMed ID: 29715311 [TBL] [Abstract][Full Text] [Related]
10. Dynamic monitoring of biomass of rice under different nitrogen treatments using a lightweight UAV with dual image-frame snapshot cameras. Cen H; Wan L; Zhu J; Li Y; Li X; Zhu Y; Weng H; Wu W; Yin W; Xu C; Bao Y; Feng L; Shou J; He Y Plant Methods; 2019; 15():32. PubMed ID: 30972143 [TBL] [Abstract][Full Text] [Related]
11. [Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data]. Gao L; Li CC; Wang BS; Yang Gui-jun ; Wang L; Fu K Ying Yong Sheng Tai Xue Bao; 2016 Jan; 27(1):191-200. PubMed ID: 27228609 [TBL] [Abstract][Full Text] [Related]
12. Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images. Tunca E; Köksal ES; Çetin S; Ekiz NM; Balde H Environ Monit Assess; 2018 Oct; 190(11):682. PubMed ID: 30374821 [TBL] [Abstract][Full Text] [Related]
13. Monitoring of beach litter by automatic interpretation of unmanned aerial vehicle images using the segmentation threshold method. Bao Z; Sha J; Li X; Hanchiso T; Shifaw E Mar Pollut Bull; 2018 Dec; 137():388-398. PubMed ID: 30503448 [TBL] [Abstract][Full Text] [Related]
14. Utilizing Spectral, Structural and Textural Features for Estimating Oat Above-Ground Biomass Using UAV-Based Multispectral Data and Machine Learning. Dhakal R; Maimaitijiang M; Chang J; Caffe M Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139554 [TBL] [Abstract][Full Text] [Related]
15. Remote sensing estimation of sugar beet SPAD based on un-manned aerial vehicle multispectral imagery. Gao W; Zeng W; Li S; Zhang L; Wang W; Song J; Wu H PLoS One; 2024; 19(6):e0300056. PubMed ID: 38905187 [TBL] [Abstract][Full Text] [Related]
16. Maize Crop Coefficient Estimated from UAV-Measured Multispectral Vegetation Indices. Zhang Y; Han W; Niu X; Li G Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795309 [TBL] [Abstract][Full Text] [Related]
17. Estimating and evaluating the rice cluster distribution uniformity with UAV-based images. Wang X; Tang Q; Chen Z; Luo Y; Fu H; Li X Sci Rep; 2021 Nov; 11(1):21442. PubMed ID: 34728745 [TBL] [Abstract][Full Text] [Related]
18. Automatic identification of agricultural terraces through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from an unmanned aerial vehicle. Diaz-Varela RA; Zarco-Tejada PJ; Angileri V; Loudjani P J Environ Manage; 2014 Feb; 134():117-26. PubMed ID: 24473345 [TBL] [Abstract][Full Text] [Related]
19. Integrated Satellite, Unmanned Aerial Vehicle (UAV) and Ground Inversion of the SPAD of Winter Wheat in the Reviving Stage. Zhang S; Zhao G; Lang K; Su B; Chen X; Xi X; Zhang H Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934683 [TBL] [Abstract][Full Text] [Related]
20. Sustainable monitoring coverage of unmanned aerial vehicle photogrammetry according to wing type and image resolution. Park S; Lee H; Chon J Environ Pollut; 2019 Apr; 247():340-348. PubMed ID: 30690230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]