BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 29746703)

  • 41. S100A8 and S100A9 in Cancer.
    Chen Y; Ouyang Y; Li Z; Wang X; Ma J
    Biochim Biophys Acta Rev Cancer; 2023 May; 1878(3):188891. PubMed ID: 37001615
    [TBL] [Abstract][Full Text] [Related]  

  • 42. S100A8/A9 stimulates keratinocyte proliferation in the development of squamous cell carcinoma of the skin via the receptor for advanced glycation-end products.
    Iotzova-Weiss G; Dziunycz PJ; Freiberger SN; Läuchli S; Hafner J; Vogl T; French LE; Hofbauer GF
    PLoS One; 2015; 10(3):e0120971. PubMed ID: 25811984
    [TBL] [Abstract][Full Text] [Related]  

  • 43. S100A8/A9 in Myocardial Infarction.
    Sreejit G; Nooti SK; Athmanathan B; Nagareddy PR
    Methods Mol Biol; 2019; 1929():739-754. PubMed ID: 30710308
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hypoxia and HIF-1 increase S100A8 and S100A9 expression in prostate cancer.
    Grebhardt S; Veltkamp C; Ströbel P; Mayer D
    Int J Cancer; 2012 Dec; 131(12):2785-94. PubMed ID: 22505354
    [TBL] [Abstract][Full Text] [Related]  

  • 45. S100A8/A9: a Janus-faced molecule in cancer therapy and tumorgenesis.
    Ghavami S; Chitayat S; Hashemi M; Eshraghi M; Chazin WJ; Halayko AJ; Kerkhoff C
    Eur J Pharmacol; 2009 Dec; 625(1-3):73-83. PubMed ID: 19835859
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interaction between S100A8/A9 and annexin A6 is involved in the calcium-induced cell surface exposition of S100A8/A9.
    Bode G; Lüken A; Kerkhoff C; Roth J; Ludwig S; Nacken W
    J Biol Chem; 2008 Nov; 283(46):31776-84. PubMed ID: 18786929
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effects of a randomized trial of brief forms of stress management on RAGE-associated S100A8/A9 in patients with breast cancer undergoing primary treatment.
    Taub CJ; Lippman ME; Hudson BI; Blomberg BB; Diaz A; Fisher HM; Nahin ER; Lechner SC; Kwak T; Hwang GH; Antoni MH
    Cancer; 2019 May; 125(10):1717-1725. PubMed ID: 30633331
    [TBL] [Abstract][Full Text] [Related]  

  • 48. S100A8/A9 induces microglia activation and promotes the apoptosis of oligodendrocyte precursor cells by activating the NF-κB signaling pathway.
    Wu M; Xu L; Wang Y; Zhou N; Zhen F; Zhang Y; Qu X; Fan H; Liu S; Chen Y; Yao R
    Brain Res Bull; 2018 Oct; 143():234-245. PubMed ID: 30266587
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fast IMAC purification of non-tagged S100A8/A9 (calprotectin) from Homo sapiens and Sus scrofa.
    Hau JL; Kremser H; Knogl-Tritschler S; Stefanski V; Steuber J; Fritz G
    Protein Expr Purif; 2023 Aug; 208-209():106275. PubMed ID: 37084837
    [TBL] [Abstract][Full Text] [Related]  

  • 50. S100A8 and S100A9: DAMPs at the crossroads between innate immunity, traditional risk factors, and cardiovascular disease.
    Schiopu A; Cotoi OS
    Mediators Inflamm; 2013; 2013():828354. PubMed ID: 24453429
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Targeting S100A9 Prevents β-Adrenergic Activation-Induced Cardiac Injury.
    Liu J; Chen X; Zeng L; Zhang L; Wang F; Peng C; Huang X; Li S; Liu Y; Shou W; Li X; Cao D
    Inflammation; 2024 Apr; 47(2):789-806. PubMed ID: 38446361
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Involvement of calprotectin (S100A8/A9) in molecular pathways associated with HNSCC.
    Khammanivong A; Sorenson BS; Ross KF; Dickerson EB; Hasina R; Lingen MW; Herzberg MC
    Oncotarget; 2016 Mar; 7(12):14029-47. PubMed ID: 26883112
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Advanced glycation end-products and Porphyromonas gingivalis lipopolysaccharide increase calprotectin expression in human gingival epithelial cells.
    Hiroshima Y; Sakamoto E; Yoshida K; Abe K; Naruishi K; Yamamoto T; Shinohara Y; Kido JI; Geczy CL
    J Cell Biochem; 2018 Feb; 119(2):1591-1603. PubMed ID: 28771806
    [TBL] [Abstract][Full Text] [Related]  

  • 54. S100A8/A9 increases the mobilization of pro-inflammatory Ly6C
    Cremers NAJ; van den Bosch MHJ; van Dalen S; Di Ceglie I; Ascone G; van de Loo F; Koenders M; van der Kraan P; Sloetjes A; Vogl T; Roth J; Geven EJW; Blom AB; van Lent PLEM
    Arthritis Res Ther; 2017 Sep; 19(1):217. PubMed ID: 28969686
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Expression and function of S100A8/A9 (calprotectin) in human typhoid fever and the murine Salmonella model.
    De Jong HK; Achouiti A; Koh GC; Parry CM; Baker S; Faiz MA; van Dissel JT; Vollaard AM; van Leeuwen EM; Roelofs JJ; de Vos AF; Roth J; van der Poll T; Vogl T; Wiersinga WJ
    PLoS Negl Trop Dis; 2015 Apr; 9(4):e0003663. PubMed ID: 25860480
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice.
    Fujiu K; Manabe I; Nagai R
    J Clin Invest; 2011 Sep; 121(9):3425-41. PubMed ID: 21821915
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The roles of toll-like receptor 4, CD33, CD68, CD69, or CD147/EMMPRIN for monocyte activation by the DAMP S100A8/S100A9.
    Möller A; Jauch-Speer SL; Gandhi S; Vogl T; Roth J; Fehler O
    Front Immunol; 2023; 14():1110185. PubMed ID: 37056775
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neuroplastin-β mediates S100A8/A9-induced lung cancer disseminative progression.
    Sumardika IW; Chen Y; Tomonobu N; Kinoshita R; Ruma IMW; Sato H; Kondo E; Inoue Y; Yamauchi A; Murata H; Yamamoto KI; Tomida S; Shien K; Yamamoto H; Soh J; Futami J; Putranto EW; Hibino T; Nishibori M; Toyooka S; Sakaguchi M
    Mol Carcinog; 2019 Jun; 58(6):980-995. PubMed ID: 30720226
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Substitution of methionine 63 or 83 in S100A9 and cysteine 42 in S100A8 abrogate the antifungal activities of S100A8/A9: potential role for oxidative regulation.
    Sroussi HY; Köhler GA; Agabian N; Villines D; Palefsky JM
    FEMS Immunol Med Microbiol; 2009 Jan; 55(1):55-61. PubMed ID: 19087201
    [TBL] [Abstract][Full Text] [Related]  

  • 60. exMCAM-Fc, an S100A8/A9-mediated-metastasis blocker, efficiently reduced the number of circulating tumor cells that appeared in the blood flow.
    Tomonobu N; Kinoshita R; Sakaguchi M
    Mol Biol Rep; 2020 Jun; 47(6):4879-4883. PubMed ID: 32383137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.