These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 29746792)
1. The modulation of corticospinal excitability and inhibition following acute resistance exercise in males and females. Latella C; Hendy A; Vanderwesthuizen D; Teo WP Eur J Sport Sci; 2018 Aug; 18(7):984-993. PubMed ID: 29746792 [TBL] [Abstract][Full Text] [Related]
2. Effects of acute resistance training modality on corticospinal excitability, intra-cortical and neuromuscular responses. Latella C; Teo WP; Harris D; Major B; VanderWesthuizen D; Hendy AM Eur J Appl Physiol; 2017 Nov; 117(11):2211-2224. PubMed ID: 28879576 [TBL] [Abstract][Full Text] [Related]
3. The Time-Course of Acute Changes in Corticospinal Excitability, Intra-Cortical Inhibition and Facilitation Following a Single-Session Heavy Strength Training of the Biceps Brachii. Latella C; Hendy AM; Pearce AJ; VanderWesthuizen D; Teo WP Front Hum Neurosci; 2016; 10():607. PubMed ID: 27990108 [No Abstract] [Full Text] [Related]
4. Heavy-resistance exercise-induced increases in jump performance are not explained by changes in neuromuscular function. Thomas K; Toward A; West DJ; Howatson G; Goodall S Scand J Med Sci Sports; 2017 Jan; 27(1):35-44. PubMed ID: 26639349 [TBL] [Abstract][Full Text] [Related]
5. Corticospinal changes induced by fatiguing eccentric versus concentric exercise. Garnier YM; Paizis C; Lepers R Eur J Sport Sci; 2019 Mar; 19(2):166-176. PubMed ID: 30016203 [TBL] [Abstract][Full Text] [Related]
6. Task-specific strength increases after lower-limb compound resistance training occurred in the absence of corticospinal changes in vastus lateralis. Ansdell P; Brownstein CG; Škarabot J; Angius L; Kidgell D; Frazer A; Hicks KM; Durbaba R; Howatson G; Goodall S; Thomas K Exp Physiol; 2020 Jul; 105(7):1132-1150. PubMed ID: 32363636 [TBL] [Abstract][Full Text] [Related]
7. Effects of eccentric versus concentric contractions of the biceps brachii on intracortical inhibition and facilitation. Latella C; Goodwill AM; Muthalib M; Hendy AM; Major B; Nosaka K; Teo WP Scand J Med Sci Sports; 2019 Mar; 29(3):369-379. PubMed ID: 30403428 [TBL] [Abstract][Full Text] [Related]
8. Modulation of specific inhibitory networks in fatigued locomotor muscles of healthy males. Goodall S; Howatson G; Thomas K Exp Brain Res; 2018 Feb; 236(2):463-473. PubMed ID: 29214392 [TBL] [Abstract][Full Text] [Related]
9. Corticospinal excitability changes following downhill and uphill walking. Garnier YM; Paizis C; Martin A; Lepers R Exp Brain Res; 2019 Aug; 237(8):2023-2033. PubMed ID: 31165178 [TBL] [Abstract][Full Text] [Related]
10. Changes in voluntary activation assessed by transcranial magnetic stimulation during prolonged cycling exercise. Jubeau M; Rupp T; Perrey S; Temesi J; Wuyam B; Levy P; Verges S; Millet GY PLoS One; 2014; 9(2):e89157. PubMed ID: 24586559 [TBL] [Abstract][Full Text] [Related]
11. Reliability of transcranial magnetic stimulation-evoked responses on knee extensor muscles during cycling. Zhang J; McClean ZJ; Khaledi N; Morgan SJ; Millet GY; Aboodarda SJ Exp Brain Res; 2024 Jul; 242(7):1681-1695. PubMed ID: 38806709 [TBL] [Abstract][Full Text] [Related]
12. Motor cortical and corticospinal function differ during an isometric squat compared with isometric knee extension. Brownstein CG; Ansdell P; Škarabot J; Frazer A; Kidgell D; Howatson G; Goodall S; Thomas K Exp Physiol; 2018 Sep; 103(9):1251-1263. PubMed ID: 29928769 [TBL] [Abstract][Full Text] [Related]
13. Effects of postexercise blood flow occlusion on quadriceps responses to transcranial magnetic stimulation. Latella C; Pinto MD; Nuzzo JL; Taylor JL J Appl Physiol (1985); 2021 May; 130(5):1326-1336. PubMed ID: 33571056 [TBL] [Abstract][Full Text] [Related]
14. Effects of endurance cycling training on neuromuscular fatigue in healthy active men. Part II: Corticospinal excitability and voluntary activation. Aboodarda SJ; Mira J; Floreani M; Jaswal R; Moon SJ; Amery K; Rupp T; Millet GY Eur J Appl Physiol; 2018 Nov; 118(11):2295-2305. PubMed ID: 30128852 [TBL] [Abstract][Full Text] [Related]
15. Training intensity-dependent increases in corticospinal but not intracortical excitability after acute strength training. Colomer-Poveda D; Hortobágyi T; Keller M; Romero-Arenas S; Márquez G Scand J Med Sci Sports; 2020 Apr; 30(4):652-661. PubMed ID: 31785009 [TBL] [Abstract][Full Text] [Related]
16. Impact of a Carbohydrate Mouth Rinse on Quadriceps Muscle Function and Corticomotor Excitability. Bailey SP; Hibbard J; La Forge D; Mitchell M; Roelands B; Harris GK; Folger S Int J Sports Physiol Perform; 2019 Jul; 14(7):927-933. PubMed ID: 30676814 [TBL] [Abstract][Full Text] [Related]
17. Motoneuron excitability of the quadriceps decreases during a fatiguing submaximal isometric contraction. Finn HT; Rouffet DM; Kennedy DS; Green S; Taylor JL J Appl Physiol (1985); 2018 Apr; 124(4):970-979. PubMed ID: 29357479 [TBL] [Abstract][Full Text] [Related]
18. Neural adaptations in quadriceps muscle after 4 weeks of local vibration training in young versus older subjects. Souron R; Besson T; Lapole T; Millet GY Appl Physiol Nutr Metab; 2018 May; 43(5):427-436. PubMed ID: 29172028 [TBL] [Abstract][Full Text] [Related]
19. Training load but not fatigue affects cross-education of maximal voluntary force. Colomer-Poveda D; Romero-Arenas S; Fariñas J; Iglesias-Soler E; Hortobágyi T; Márquez G Scand J Med Sci Sports; 2021 Feb; 31(2):313-324. PubMed ID: 33038018 [TBL] [Abstract][Full Text] [Related]
20. Central excitability does not limit postfatigue voluntary activation of quadriceps femoris. Kalmar JM; Cafarelli E J Appl Physiol (1985); 2006 Jun; 100(6):1757-64. PubMed ID: 16424071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]