These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29746794)

  • 1. An accurate estimation of the horizontal acceleration of a rower's centre of mass using inertial sensors: a validation.
    Lintmeijer LL; Faber GS; Kruk HR; van Soest AJK; Hofmijster MJ
    Eur J Sport Sci; 2018 Aug; 18(7):940-946. PubMed ID: 29746794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved determination of mechanical power output in rowing: Experimental results.
    Lintmeijer LL; Hofmijster MJ; Schulte Fischedick GA; Zijlstra PJ; Van Soest AJK
    J Sports Sci; 2018 Sep; 36(18):2138-2146. PubMed ID: 29737929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Wireless Rowing Measurement System for Improving the Rowing Performance of Athletes.
    Hohmuth R; Schwensow D; Malberg H; Schmidt M
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Life Measurement of Tri-Axial Walking Ground Reaction Forces Using Optimal Network of Wearable Inertial Measurement Units.
    Shahabpoor E; Pavic A; Brownjohn JMW; Billings SA; Guo LZ; Bocian M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1243-1253. PubMed ID: 29877849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetry in elite rowers: effect of ergometer design and stroke rate.
    Fohanno V; Nordez A; Smith R; Colloud F
    Sports Biomech; 2015 Sep; 14(3):310-22. PubMed ID: 26266336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strapping rowers to their sliding seat improves performance during the start of ergometer rowing.
    van Soest AJ; Hofmijster M
    J Sports Sci; 2009 Feb; 27(3):283-9. PubMed ID: 19156561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinal and Pelvic Kinematics During Prolonged Rowing on an Ergometer vs. Indoor Tank Rowing.
    Trompeter K; Weerts J; Fett D; Firouzabadi A; Heinrich K; Schmidt H; Brüggemann GP; Platen P
    J Strength Cond Res; 2021 Sep; 35(9):2622-2628. PubMed ID: 31373977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of an inertial measurement unit-based approach for determining centre-of-mass movement during non-seated cycling.
    Wilkinson RD; Lichtwark GA
    J Biomech; 2021 Sep; 126():110441. PubMed ID: 34293600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opportunities for measuring wheelchair kinematics in match settings; reliability of a three inertial sensor configuration.
    van der Slikke RM; Berger MA; Bregman DJ; Lagerberg AH; Veeger HE
    J Biomech; 2015 Sep; 48(12):3398-405. PubMed ID: 26141162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The validity of using inertial measurement units to monitor the torso and pelvis sagittal plane motion of elite rowers.
    Brice SM; Millett EL; Philippa B
    J Sports Sci; 2022 Apr; 40(8):950-958. PubMed ID: 35199626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biomechanical review of factors affecting rowing performance.
    Baudouin A; Hawkins D
    Br J Sports Med; 2002 Dec; 36(6):396-402; discussion 402. PubMed ID: 12453833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Impact Loading Rate Estimation During Running via a Subject-Independent Convolutional Neural Network Model and Optimal IMU Placement.
    Tan T; Strout ZA; Shull PB
    IEEE J Biomed Health Inform; 2021 Apr; 25(4):1215-1222. PubMed ID: 32763858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IMU: inertial sensing of vertical CoM movement.
    Esser P; Dawes H; Collett J; Howells K
    J Biomech; 2009 Jul; 42(10):1578-1581. PubMed ID: 19442978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validity of Ski Skating Center-of-Mass Displacement Measured by a Single Inertial Measurement Unit.
    Myklebust H; Gløersen Ø; Hallén J
    J Appl Biomech; 2015 Dec; 31(6):492-8. PubMed ID: 26155813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing inertial measurement units and marker-based biomechanical models during dynamic rotation of the torso.
    Brice SM; Phillips EJ; Millett EL; Hunter A; Philippa B
    Eur J Sport Sci; 2020 Jul; 20(6):767-775. PubMed ID: 31512552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards an ideal rowing technique for performance : the contributions from biomechanics.
    Soper C; Hume PA
    Sports Med; 2004; 34(12):825-48. PubMed ID: 15462614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional acceleration of the body center of mass in people with transfemoral amputation: Identification of a minimal body segment network.
    Simonetti E; Bergamini E; Bascou J; Vannozzi G; Pillet H
    Gait Posture; 2021 Oct; 90():129-136. PubMed ID: 34455201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rowing Biomechanics, Physiology and Hydrodynamic: A Systematic Review.
    Yusof AAM; Harun MN; Nasruddin FA; Syahrom A
    Int J Sports Med; 2022 Jun; 43(7):577-585. PubMed ID: 32842154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying symmetry in running gait using a single inertial sensor.
    Lee JB; Sutter KJ; Askew CD; Burkett BJ
    J Sci Med Sport; 2010 Sep; 13(5):559-63. PubMed ID: 19850518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of Human Center of Mass Position through the Inertial Sensors-Based Methods in Postural Tasks: An Accuracy Evaluation.
    Germanotta M; Mileti I; Conforti I; Del Prete Z; Aprile I; Palermo E
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33467072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.