These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
426 related articles for article (PubMed ID: 29747102)
1. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. Kanakaraju D; Glass BD; Oelgemöller M J Environ Manage; 2018 Aug; 219():189-207. PubMed ID: 29747102 [TBL] [Abstract][Full Text] [Related]
2. Comprehensive study on effects of water matrices on removal of pharmaceuticals by three different kinds of advanced oxidation processes. Tokumura M; Sugawara A; Raknuzzaman M; Habibullah-Al-Mamun M; Masunaga S Chemosphere; 2016 Sep; 159():317-325. PubMed ID: 27317938 [TBL] [Abstract][Full Text] [Related]
3. Recent advances in biopolymer-based advanced oxidation processes for dye removal applications: A review. Peramune D; Manatunga DC; Dassanayake RS; Premalal V; Liyanage RN; Gunathilake C; Abidi N Environ Res; 2022 Dec; 215(Pt 1):114242. PubMed ID: 36067842 [TBL] [Abstract][Full Text] [Related]
5. Comparative overview of advanced oxidation processes and biological approaches for the removal pharmaceuticals. Taoufik N; Boumya W; Achak M; Sillanpää M; Barka N J Environ Manage; 2021 Jun; 288():112404. PubMed ID: 33780817 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical-based approaches for the treatment of pharmaceuticals and personal care products in wastewater. Mosur Nagarajan A; Subramanian A; Prasad Gobinathan K; Mohanakrishna G; Sivagami K J Environ Manage; 2023 Oct; 344():118385. PubMed ID: 37392690 [TBL] [Abstract][Full Text] [Related]
7. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Klavarioti M; Mantzavinos D; Kassinos D Environ Int; 2009 Feb; 35(2):402-17. PubMed ID: 18760478 [TBL] [Abstract][Full Text] [Related]
8. A review toward contaminants of emerging concern in Brazil: Occurrence, impact and their degradation by advanced oxidation process in aquatic matrices. Marson EO; Paniagua CES; Gomes Júnior O; Gonçalves BR; Silva VM; Ricardo IA; V M Starling MC; Amorim CC; Trovó AG Sci Total Environ; 2022 Aug; 836():155605. PubMed ID: 35504382 [TBL] [Abstract][Full Text] [Related]
9. Degradations of endocrine-disrupting chemicals and pharmaceutical compounds in wastewater with carbon-based nanomaterials: a critical review. Ojha A; Tiwary D; Oraon R; Singh P Environ Sci Pollut Res Int; 2021 Jun; 28(24):30573-30594. PubMed ID: 33909248 [TBL] [Abstract][Full Text] [Related]
10. Removal of antibiotic cloxacillin by means of electrochemical oxidation, TiO Serna-Galvis EA; Giraldo-Aguirre AL; Silva-Agredo J; Flórez-Acosta OA; Torres-Palma RA Environ Sci Pollut Res Int; 2017 Mar; 24(7):6339-6352. PubMed ID: 26916268 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the new Cl Sgroi M; Anumol T; Vagliasindi FGA; Snyder SA; Roccaro P Sci Total Environ; 2021 Apr; 765():142720. PubMed ID: 33572038 [TBL] [Abstract][Full Text] [Related]
12. A review of ecotoxicity reduction in contaminated waters by heterogeneous photocatalytic ozonation. Lashuk B; Yargeau V Sci Total Environ; 2021 Sep; 787():147645. PubMed ID: 34000552 [TBL] [Abstract][Full Text] [Related]
13. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants. Tsydenova O; Batoev V; Batoeva A Int J Environ Res Public Health; 2015 Aug; 12(8):9542-61. PubMed ID: 26287222 [TBL] [Abstract][Full Text] [Related]
14. Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes - A review. Mirzaei A; Chen Z; Haghighat F; Yerushalmi L Chemosphere; 2017 May; 174():665-688. PubMed ID: 28199944 [TBL] [Abstract][Full Text] [Related]
15. Effective elimination of fifteen relevant pharmaceuticals in hospital wastewater from Colombia by combination of a biological system with a sonochemical process. Serna-Galvis EA; Silva-Agredo J; Botero-Coy AM; Moncayo-Lasso A; Hernández F; Torres-Palma RA Sci Total Environ; 2019 Jun; 670():623-632. PubMed ID: 30909040 [TBL] [Abstract][Full Text] [Related]
16. From wastewater to clean water: Recent advances on the removal of metronidazole, ciprofloxacin, and sulfamethoxazole antibiotics from water through adsorption and advanced oxidation processes (AOPs). Gahrouei AE; Vakili S; Zandifar A; Pourebrahimi S Environ Res; 2024 Jul; 252(Pt 3):119029. PubMed ID: 38685299 [TBL] [Abstract][Full Text] [Related]
17. SARS-CoV-2 pharmaceutical drugs: a critical review on the environmental impacts, chemical characteristics, and behavior of advanced oxidation processes in water. Castañeda-Juárez M; Linares-Hernández I; Martínez-Miranda V; Teutli-Sequeira EA; Castillo-Suárez LA; Sierra-Sánchez AG Environ Sci Pollut Res Int; 2022 Sep; 29(45):67604-67640. PubMed ID: 35930148 [TBL] [Abstract][Full Text] [Related]
18. A critical review on advanced oxidation processes for the removal of trace organic contaminants: A voyage from individual to integrated processes. Tufail A; Price WE; Hai FI Chemosphere; 2020 Dec; 260():127460. PubMed ID: 32673866 [TBL] [Abstract][Full Text] [Related]
19. Advancements in electrochemical technologies for the removal of fluoroquinolone antibiotics in wastewater: A review. Orimolade BO; Oladipo AO; Idris AO; Usisipho F; Azizi S; Maaza M; Lebelo SL; Mamba BB Sci Total Environ; 2023 Jul; 881():163522. PubMed ID: 37068672 [TBL] [Abstract][Full Text] [Related]
20. Advanced catalytic ozonation for degradation of pharmaceutical pollutants-A review. Issaka E; Amu-Darko JN; Yakubu S; Fapohunda FO; Ali N; Bilal M Chemosphere; 2022 Feb; 289():133208. PubMed ID: 34890622 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]