These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29747576)

  • 1. Selective advantage of implementing optimal contributions selection and timescales for the convergence of long-term genetic contributions.
    Howard DM; Pong-Wong R; Knap PW; Kremer VD; Woolliams JA
    Genet Sel Evol; 2018 May; 50(1):24. PubMed ID: 29747576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistency of Prediction Accuracy and Genetic Gain in Synthetic Populations Under Recurrent Genomic Selection.
    Müller D; Schopp P; Melchinger AE
    G3 (Bethesda); 2017 Mar; 7(3):801-811. PubMed ID: 28064189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-selection against a lethal recessive allele in breeding schemes with optimum-contribution selection or truncation selection.
    Hjortø L; Henryon M; Liu H; Berg P; Thomasen JR; Sørensen AC
    Genet Sel Evol; 2021 Sep; 53(1):75. PubMed ID: 34551728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic mating as sustainable breeding for Chinese indigenous Ningxiang pigs.
    He J; Wu XL; Zeng Q; Li H; Ma H; Jiang J; Rosa GJM; Gianola D; Tait RG; Bauck S
    PLoS One; 2020; 15(8):e0236629. PubMed ID: 32797113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Most of the long-term genetic gain from optimum-contribution selection can be realised with restrictions imposed during optimisation.
    Henryon M; Ostersen T; Ask B; Sørensen AC; Berg P
    Genet Sel Evol; 2015 Mar; 47(1):21. PubMed ID: 25887703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased genetic gains in sheep, beef and dairy breeding programs from using female reproductive technologies combined with optimal contribution selection and genomic breeding values.
    Granleese T; Clark SA; Swan AA; van der Werf JH
    Genet Sel Evol; 2015 Sep; 47(1):70. PubMed ID: 26370143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mendelian sampling terms as a selective advantage in optimum breeding schemes with restrictions on the rate of inbreeding.
    Avendaño S; Woolliams JA; Villanueva B
    Genet Res; 2004 Feb; 83(1):55-64. PubMed ID: 15125067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of Genomic Prediction in Synthetic Populations Depending on the Number of Parents, Relatedness, and Ancestral Linkage Disequilibrium.
    Schopp P; Müller D; Technow F; Melchinger AE
    Genetics; 2017 Jan; 205(1):441-454. PubMed ID: 28049710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of genetic gain from quadratic optimisation with constrained rates of inbreeding.
    Villanueva B; Avendaño S; Woolliams JA
    Genet Sel Evol; 2006; 38(2):127-46. PubMed ID: 16492371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mating structures for genomic selection breeding programs in aquaculture.
    Sonesson AK; Ødegård J
    Genet Sel Evol; 2016 Jun; 48(1):46. PubMed ID: 27342705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic parameters and expected responses to selection for components of feed efficiency in a Duroc pig line.
    Sánchez JP; Ragab M; Quintanilla R; Rothschild MF; Piles M
    Genet Sel Evol; 2017 Dec; 49(1):86. PubMed ID: 29191169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of breeding values for uniformity of growth in Atlantic salmon (Salmo salar) using pedigree relationships or single-step genomic evaluation.
    Sae-Lim P; Kause A; Lillehammer M; Mulder HA
    Genet Sel Evol; 2017 Mar; 49(1):33. PubMed ID: 28270100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benefits of testing in both bio-secure and production environments in genomic selection breeding programs for commercial broiler chicken.
    Chu TT; Alemu SW; Norberg E; Sørensen AC; Henshall J; Hawken R; Jensen J
    Genet Sel Evol; 2018 Nov; 50(1):52. PubMed ID: 30390619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximizing genetic gain over multiple generations with quantitative trait locus selection and control of inbreeding.
    Villanueva B; Dekkers JC; Woolliams JA; Settar P
    J Anim Sci; 2004 May; 82(5):1305-14. PubMed ID: 15144069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deterministic equation to predict the accuracy of multi-population genomic prediction with multiple genomic relationship matrices.
    Raymond B; Wientjes YCJ; Bouwman AC; Schrooten C; Veerkamp RF
    Genet Sel Evol; 2020 Apr; 52(1):21. PubMed ID: 32345213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing female allocation to reproductive technologies considering merit, inbreeding and cost in nucleus breeding programmes with genomic selection.
    Granleese T; Clark SA; Kinghorn BP; van der Werf JHJ
    J Anim Breed Genet; 2019 Mar; 136(2):79-90. PubMed ID: 30585664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency of genomic selection in a purebred pig male line.
    Tribout T; Larzul C; Phocas F
    J Anim Sci; 2012 Dec; 90(12):4164-76. PubMed ID: 22859761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximizing the response of selection with a predefined rate of inbreeding: overlapping generations.
    Meuwissen TH; Sonesson AK
    J Anim Sci; 1998 Oct; 76(10):2575-83. PubMed ID: 9814896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of genetic merit for growth rate in pigs using animal models with indirect genetic effects and genomic information.
    Poulsen BG; Ask B; Nielsen HM; Ostersen T; Christensen OF
    Genet Sel Evol; 2020 Oct; 52(1):58. PubMed ID: 33028188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breeding Top Genotypes and Accelerating Response to Recurrent Selection by Selecting Parents with Greater Gametic Variance.
    Bijma P; Wientjes YCJ; Calus MPL
    Genetics; 2020 Jan; 214(1):91-107. PubMed ID: 31772074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.