These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 29748221)
1. LV-MEMS: A New Challenger Against the CHAMPION? Ishikawa K Circ Cardiovasc Interv; 2018 May; 11(5):e006768. PubMed ID: 29748221 [No Abstract] [Full Text] [Related]
2. A wireless passive pressure microsensor fabricated in HTCC MEMS technology for harsh environments. Tan Q; Kang H; Xiong J; Qin L; Zhang W; Li C; Ding L; Zhang X; Yang M Sensors (Basel); 2013 Aug; 13(8):9896-908. PubMed ID: 23917261 [TBL] [Abstract][Full Text] [Related]
3. MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing. Pang C; Bae H; Gupta A; Bryden K; Yu M Opt Express; 2013 Sep; 21(19):21829-39. PubMed ID: 24104075 [TBL] [Abstract][Full Text] [Related]
4. Inductively coupled microfluidic pressure meter for in vivo monitoring of cerebrospinal fluid shunt function. Song SH; Gillies GT; Begley MR; Utz M; Broaddus WC J Med Eng Technol; 2012 Apr; 36(3):156-62. PubMed ID: 22316101 [TBL] [Abstract][Full Text] [Related]
5. Design and experimental study of microcantilever ultrasonic detection transducers. Chen X; Stratoudaki T; Sharples SD; Clark M IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec; 56(12):2722-32. PubMed ID: 20040409 [TBL] [Abstract][Full Text] [Related]
6. Safety and feasibility of pulmonary artery pressure-guided heart failure therapy: rationale and design of the prospective CardioMEMS Monitoring Study for Heart Failure (MEMS-HF). Angermann CE; Assmus B; Anker SD; Brachmann J; Ertl G; Köhler F; Rosenkranz S; Tschöpe C; Adamson PB; Böhm M Clin Res Cardiol; 2018 Nov; 107(11):991-1002. PubMed ID: 29777373 [TBL] [Abstract][Full Text] [Related]
7. Temporal synchronization and spectral combining of pulses from fiber lasers Q-switched by independent MEMS micro-mirrors. Fabert M; Desfarges-Berthelemot A; Kermène V; Crunteanu A Opt Express; 2012 Sep; 20(20):22895-901. PubMed ID: 23037439 [TBL] [Abstract][Full Text] [Related]
13. A rotational DNA nanomotor driven by an externally controlled electric field. Klapper Y; Sinha N; Ng TW; Lubrich D Small; 2010 Jan; 6(1):44-7. PubMed ID: 19943245 [No Abstract] [Full Text] [Related]
14. Differential pressure distribution measurement with an MEMS sensor on a free-flying butterfly wing. Takahashi H; Tanaka H; Matsumoto K; Shimoyama I Bioinspir Biomim; 2012 Sep; 7(3):036020. PubMed ID: 22711175 [TBL] [Abstract][Full Text] [Related]
15. Miniature multi-contact MEMS switch for broadband terahertz modulation. Unlu M; Jarrahi M Opt Express; 2014 Dec; 22(26):32245-60. PubMed ID: 25607190 [TBL] [Abstract][Full Text] [Related]
16. The Utility of a Wireless Implantable Hemodynamic Monitoring System in Patients Requiring Mechanical Circulatory Support. Feldman DS; Moazami N; Adamson PB; Vierecke J; Raval N; Shreenivas S; Cabuay BM; Jimenez J; Abraham WT; O'Connell JB; Naka Y ASAIO J; 2018; 64(3):301-308. PubMed ID: 28953199 [TBL] [Abstract][Full Text] [Related]
18. Membrane thickness design of implantable bio-MEMS sensors for the in-situ monitoring of blood flow. Steeves CA; Young YL; Liu Z; Bapat A; Bhalerao K; Soboyejo AB; Soboyejo WO J Mater Sci Mater Med; 2007 Jan; 18(1):25-37. PubMed ID: 17200811 [TBL] [Abstract][Full Text] [Related]
19. Optomechanically induced non-reciprocity in microring resonators. Hafezi M; Rabl P Opt Express; 2012 Mar; 20(7):7672-84. PubMed ID: 22453446 [TBL] [Abstract][Full Text] [Related]
20. Review of the potential of a wireless MEMS and TFT microsystems for the measurement of pressure in the GI tract. Arshak A; Arshak K; Waldron D; Morris D; Korostynska O; Jafer E; Lyons G Med Eng Phys; 2005 Jun; 27(5):347-56. PubMed ID: 15863344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]