BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 29748257)

  • 1. Metabolic regulation of transcription through compartmentalized NAD
    Ryu KW; Nandu T; Kim J; Challa S; DeBerardinis RJ; Kraus WL
    Science; 2018 May; 360(6389):. PubMed ID: 29748257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PARP-1 Controls the Adipogenic Transcriptional Program by PARylating C/EBPβ and Modulating Its Transcriptional Activity.
    Luo X; Ryu KW; Kim DS; Nandu T; Medina CJ; Gupte R; Gibson BA; Soccio RE; Yu Y; Gupta RK; Kraus WL
    Mol Cell; 2017 Jan; 65(2):260-271. PubMed ID: 28107648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of poly(ADP-ribose) polymerase-1-dependent gene expression through promoter-directed recruitment of a nuclear NAD+ synthase.
    Zhang T; Berrocal JG; Yao J; DuMond ME; Krishnakumar R; Ruhl DD; Ryu KW; Gamble MJ; Kraus WL
    J Biol Chem; 2012 Apr; 287(15):12405-16. PubMed ID: 22334709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of recombinant human nicotinamide mononucleotide adenylyl transferase (NMNAT), a nuclear enzyme essential for NAD synthesis.
    Schweiger M; Hennig K; Lerner F; Niere M; Hirsch-Kauffmann M; Specht T; Weise C; Oei SL; Ziegler M
    FEBS Lett; 2001 Mar; 492(1-2):95-100. PubMed ID: 11248244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-terminal protein acetylation by NatB modulates the levels of Nmnats, the NAD
    Croft T; Venkatakrishnan P; James Theoga Raj C; Groth B; Cater T; Salemi MR; Phinney B; Lin SJ
    J Biol Chem; 2020 May; 295(21):7362-7375. PubMed ID: 32299909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondria-localized NAD biosynthesis by nicotinamide mononucleotide adenylyltransferase in Jerusalem artichoke (Helianthus tuberosus L.) heterotrophic tissues.
    Di Martino C; Pallotta ML
    Planta; 2011 Oct; 234(4):657-70. PubMed ID: 21598001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay between compartmentalized NAD
    Cohen MS
    Genes Dev; 2020 Mar; 34(5-6):254-262. PubMed ID: 32029457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells.
    Revollo JR; Grimm AA; Imai S
    J Biol Chem; 2004 Dec; 279(49):50754-63. PubMed ID: 15381699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low nicotinamide mononucleotide adenylyltransferase activity in a tiazofurin-resistant cell line: effects on NAD metabolism and DNA repair.
    Boulton S; Kyle S; Durkacz BW
    Br J Cancer; 1997; 76(7):845-51. PubMed ID: 9328141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIRT1-dependent regulation of chromatin and transcription: linking NAD(+) metabolism and signaling to the control of cellular functions.
    Zhang T; Kraus WL
    Biochim Biophys Acta; 2010 Aug; 1804(8):1666-75. PubMed ID: 19879981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of poly(ADP-ribose) polymerase 1 activity by the phosphorylation state of the nuclear NAD biosynthetic enzyme NMN adenylyl transferase 1.
    Berger F; Lau C; Ziegler M
    Proc Natl Acad Sci U S A; 2007 Mar; 104(10):3765-70. PubMed ID: 17360427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. YCL047C/POF1 is a novel nicotinamide mononucleotide adenylyltransferase (NMNAT) in Saccharomyces cerevisiae.
    Kato M; Lin SJ
    J Biol Chem; 2014 May; 289(22):15577-87. PubMed ID: 24759102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nicotinamide/nicotinic acid mononucleotide adenylyltransferase, new insights into an ancient enzyme.
    Zhai RG; Rizzi M; Garavaglia S
    Cell Mol Life Sci; 2009 Sep; 66(17):2805-18. PubMed ID: 19448972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rat liver mitochondria can synthesize nicotinamide adenine dinucleotide from nicotinamide mononucleotide and ATP via a putative matrix nicotinamide mononucleotide adenylyltransferase.
    Barile M; Passarella S; Danese G; Quagliariello E
    Biochem Mol Biol Int; 1996 Feb; 38(2):297-306. PubMed ID: 8850525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nicotinate/nicotinamide mononucleotide adenyltransferase-mediated regulation of NAD biosynthesis protects guard cells from reactive oxygen species in ABA-mediated stomatal movement in Arabidopsis.
    Hashida SN; Itami T; Takahashi H; Takahara K; Nagano M; Kawai-Yamada M; Shoji K; Goto F; Yoshihara T; Uchimiya H
    J Exp Bot; 2010 Aug; 61(13):3813-25. PubMed ID: 20591898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms.
    Berger F; Lau C; Dahlmann M; Ziegler M
    J Biol Chem; 2005 Oct; 280(43):36334-41. PubMed ID: 16118205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation.
    Nikiforov A; Dölle C; Niere M; Ziegler M
    J Biol Chem; 2011 Jun; 286(24):21767-78. PubMed ID: 21504897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of cytotoxicity of benzamide riboside by expression of NMN adenylyltransferase.
    Yalowitz JA; Jayaram HN
    Curr Med Chem; 2002 Apr; 9(7):749-58. PubMed ID: 11966438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMNAT expression and its relation to NAD metabolism.
    Jayaram HN; Kusumanchi P; Yalowitz JA
    Curr Med Chem; 2011; 18(13):1962-72. PubMed ID: 21517776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutant Nmnat1 leads to a retina-specific decrease of NAD+ accompanied by increased poly(ADP-ribose) in a mouse model of NMNAT1-associated retinal degeneration.
    Greenwald SH; Brown EE; Scandura MJ; Hennessey E; Farmer R; Du J; Wang Y; Pierce EA
    Hum Mol Genet; 2021 May; 30(8):644-657. PubMed ID: 33709122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.