BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

594 related articles for article (PubMed ID: 29748565)

  • 1. Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance.
    Pettitt SJ; Krastev DB; Brandsma I; Dréan A; Song F; Aleksandrov R; Harrell MI; Menon M; Brough R; Campbell J; Frankum J; Ranes M; Pemberton HN; Rafiq R; Fenwick K; Swain A; Guettler S; Lee JM; Swisher EM; Stoynov S; Yusa K; Ashworth A; Lord CJ
    Nat Commun; 2018 May; 9(1):1849. PubMed ID: 29748565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions.
    Zimmermann M; Murina O; Reijns MAM; Agathanggelou A; Challis R; Tarnauskaitė Ž; Muir M; Fluteau A; Aregger M; McEwan A; Yuan W; Clarke M; Lambros MB; Paneesha S; Moss P; Chandrashekhar M; Angers S; Moffat J; Brunton VG; Hart T; de Bono J; Stankovic T; Jackson AP; Durocher D
    Nature; 2018 Jul; 559(7713):285-289. PubMed ID: 29973717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PARP1-DOT1L transcription axis drives acquired resistance to PARP inhibitor in ovarian cancer.
    Liu C; Li J; Xu F; Chen L; Ni M; Wu J; Zhao H; Wu Y; Li J; Wu X; Chen X
    Mol Cancer; 2024 May; 23(1):111. PubMed ID: 38778348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HMGB3 promotes PARP inhibitor resistance through interacting with PARP1 in ovarian cancer.
    Ma H; Qi G; Han F; Lu W; Peng J; Li R; Yan S; Yuan C; Kong B
    Cell Death Dis; 2022 Mar; 13(3):263. PubMed ID: 35332131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of nuclear DNA ligase III reverts PARP inhibitor resistance in BRCA1/53BP1 double-deficient cells by exposing ssDNA gaps.
    Paes Dias M; Tripathi V; van der Heijden I; Cong K; Manolika EM; Bhin J; Gogola E; Galanos P; Annunziato S; Lieftink C; Andújar-Sánchez M; Chakrabarty S; Smith GCM; van de Ven M; Beijersbergen RL; Bartkova J; Rottenberg S; Cantor S; Bartek J; Ray Chaudhuri A; Jonkers J
    Mol Cell; 2021 Nov; 81(22):4692-4708.e9. PubMed ID: 34555355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EZH2 contributes to the response to PARP inhibitors through its PARP-mediated poly-ADP ribosylation in breast cancer.
    Yamaguchi H; Du Y; Nakai K; Ding M; Chang SS; Hsu JL; Yao J; Wei Y; Nie L; Jiao S; Chang WC; Chen CH; Yu Y; Hortobagyi GN; Hung MC
    Oncogene; 2018 Jan; 37(2):208-217. PubMed ID: 28925391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PARP1-siRNA suppresses human prostate cancer cell growth and progression.
    Lai Y; Kong Z; Zeng T; Xu S; Duan X; Li S; Cai C; Zhao Z; Wu W
    Oncol Rep; 2018 Apr; 39(4):1901-1909. PubMed ID: 29393407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased PARP1-DNA binding due to autoPARylation inhibition of PARP1 on DNA rather than PARP1-DNA trapping is correlated with PARP1 inhibitor's cytotoxicity.
    Chen HD; Chen CH; Wang YT; Guo N; Tian YN; Huan XJ; Song SS; He JX; Miao ZH
    Int J Cancer; 2019 Aug; 145(3):714-727. PubMed ID: 30675909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defective homologous recombination DNA repair as therapeutic target in advanced chordoma.
    Gröschel S; Hübschmann D; Raimondi F; Horak P; Warsow G; Fröhlich M; Klink B; Gieldon L; Hutter B; Kleinheinz K; Bonekamp D; Marschal O; Chudasama P; Mika J; Groth M; Uhrig S; Krämer S; Heining C; Heilig CE; Richter D; Reisinger E; Pfütze K; Eils R; Wolf S; von Kalle C; Brandts C; Scholl C; Weichert W; Richter S; Bauer S; Penzel R; Schröck E; Stenzinger A; Schlenk RF; Brors B; Russell RB; Glimm H; Schlesner M; Fröhling S
    Nat Commun; 2019 Apr; 10(1):1635. PubMed ID: 30967556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genome-wide CRISPR-Cas9 knockout screen identifies novel PARP inhibitor resistance genes in prostate cancer.
    Ipsen MB; Sørensen EMG; Thomsen EA; Weiss S; Haldrup J; Dalby A; Palmfeldt J; Bross P; Rasmussen M; Fredsøe J; Klingenberg S; Jochumsen MR; Bouchelouche K; Ulhøi BP; Borre M; Mikkelsen JG; Sørensen KD
    Oncogene; 2022 Sep; 41(37):4271-4281. PubMed ID: 35933519
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Maifrede S; Le BV; Nieborowska-Skorska M; Golovine K; Sullivan-Reed K; Dunuwille WMB; Nacson J; Hulse M; Keith K; Madzo J; Caruso LB; Gazze Z; Lian Z; Padella A; Chitrala KN; Bartholdy BA; Matlawska-Wasowska K; Di Marcantonio D; Simonetti G; Greiner G; Sykes SM; Valent P; Paietta EM; Tallman MS; Fernandez HF; Litzow MR; Minden MD; Huang J; Martinelli G; Vassiliou GS; Tempera I; Piwocka K; Johnson N; Challen GA; Skorski T
    Cancer Res; 2021 Oct; 81(19):5089-5101. PubMed ID: 34215619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studying PAR-Dependent Chromatin Remodeling to Tackle PARPi Resistance.
    Andronikou C; Rottenberg S
    Trends Mol Med; 2021 Jul; 27(7):630-642. PubMed ID: 34030964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ALDH1A1 Contributes to PARP Inhibitor Resistance via Enhancing DNA Repair in BRCA2
    Liu L; Cai S; Han C; Banerjee A; Wu D; Cui T; Xie G; Zhang J; Zhang X; McLaughlin E; Yin M; Backes FJ; Chakravarti A; Zheng Y; Wang QE
    Mol Cancer Ther; 2020 Jan; 19(1):199-210. PubMed ID: 31534014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development of PARP as a successful target for cancer therapy.
    Ferrara R; Simionato F; Ciccarese C; Grego E; Cingarlini S; Iacovelli R; Bria E; Tortora G; Melisi D
    Expert Rev Anticancer Ther; 2018 Feb; 18(2):161-175. PubMed ID: 29260919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Ubiquitin Ligase TRIP12 Limits PARP1 Trapping and Constrains PARP Inhibitor Efficiency.
    Gatti M; Imhof R; Huang Q; Baudis M; Altmeyer M
    Cell Rep; 2020 Aug; 32(5):107985. PubMed ID: 32755579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic Lethality of PARP Inhibitors in Combination with MYC Blockade Is Independent of BRCA Status in Triple-Negative Breast Cancer.
    Carey JPW; Karakas C; Bui T; Chen X; Vijayaraghavan S; Zhao Y; Wang J; Mikule K; Litton JK; Hunt KK; Keyomarsi K
    Cancer Res; 2018 Feb; 78(3):742-757. PubMed ID: 29180466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A PARP1 PROTAC as a novel strategy against PARP inhibitor resistance via promotion of ferroptosis in p53-positive breast cancer.
    Li G; Lin SS; Yu ZL; Wu XH; Liu JW; Tu GH; Liu QY; Tang YL; Jiang QN; Xu JH; Huang QL; Wu LX
    Biochem Pharmacol; 2022 Dec; 206():115329. PubMed ID: 36309080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic vulnerability to PARP1,2 inhibition in RB1-mutant osteosarcoma.
    Zoumpoulidou G; Alvarez-Mendoza C; Mancusi C; Ahmed RM; Denman M; Steele CD; Tarabichi M; Roy E; Davies LR; Manji J; Cristalli C; Scotlandi K; Pillay N; Strauss SJ; Mittnacht S
    Nat Commun; 2021 Dec; 12(1):7064. PubMed ID: 34862364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined EGFR1 and PARP1 Inhibition Enhances the Effect of Radiation in Head and Neck Squamous Cell Carcinoma Models.
    Frederick BA; Gupta R; Atilano-Roque A; Su TT; Raben D
    Radiat Res; 2020 Nov; 194(5):519-531. PubMed ID: 32936912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Effective Epigenetic-PARP Inhibitor Combination Therapy for Breast and Ovarian Cancers Independent of BRCA Mutations.
    Pulliam N; Fang F; Ozes AR; Tang J; Adewuyi A; Keer H; Lyons J; Baylin SB; Matei D; Nakshatri H; Rassool FV; Miller KD; Nephew KP
    Clin Cancer Res; 2018 Jul; 24(13):3163-3175. PubMed ID: 29615458
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 30.