BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 29748980)

  • 1. Coordinated plasticity maintains hydraulic safety in sunflower leaves.
    Cardoso AA; Brodribb TJ; Lucani CJ; DaMatta FM; McAdam SAM
    Plant Cell Environ; 2018 Nov; 41(11):2567-2576. PubMed ID: 29748980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wheat leaves embolized by water stress do not recover function upon rewatering.
    Johnson KM; Jordan GJ; Brodribb TJ
    Plant Cell Environ; 2018 Nov; 41(11):2704-2714. PubMed ID: 29981153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stomatal factors and vulnerability of stem xylem to cavitation in poplars.
    Arango-Velez A; Zwiazek JJ; Thomas BR; Tyree MT
    Physiol Plant; 2011 Oct; 143(2):154-65. PubMed ID: 21623799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grapevine acclimation to water deficit: the adjustment of stomatal and hydraulic conductance differs from petiole embolism vulnerability.
    Hochberg U; Bonel AG; David-Schwartz R; Degu A; Fait A; Cochard H; Peterlunger E; Herrera JC
    Planta; 2017 Jun; 245(6):1091-1104. PubMed ID: 28214919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stomatal behaviour and stem xylem traits are coordinated for woody plant species under exceptional drought conditions.
    Pivovaroff AL; Cook VMW; Santiago LS
    Plant Cell Environ; 2018 Nov; 41(11):2617-2626. PubMed ID: 29904932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological and gene expression responses of sunflower (Helianthus annuus L.) plants differ according to irrigation placement.
    Aguado A; Capote N; Romero F; Dodd IC; Colmenero-Flores JM
    Plant Sci; 2014 Oct; 227():37-44. PubMed ID: 25219304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vein recovery from embolism occurs under negative pressure in leaves of sunflower (Helianthus annuus).
    Nardini A; Ramani M; Gortan E; Salleo S
    Physiol Plant; 2008 Aug; 133(4):755-64. PubMed ID: 18346074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species.
    Liu YY; Song J; Wang M; Li N; Niu CY; Hao GY
    Tree Physiol; 2015 Dec; 35(12):1333-42. PubMed ID: 26209618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange.
    Zhu J; Dai Z; Vivin P; Gambetta GA; Henke M; Peccoux A; Ollat N; Delrot S
    Ann Bot; 2018 Apr; 121(5):833-848. PubMed ID: 29293870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced abscisic acid signals.
    Jia W; Davies WJ
    Plant Physiol; 2007 Jan; 143(1):68-77. PubMed ID: 17098853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of subambient to elevated atmospheric CO₂ concentration on vascular function in Helianthus annuus: implications for plant response to climate change.
    Rico C; Pittermann J; Polley HW; Aspinwall MJ; Fay PA
    New Phytol; 2013 Sep; 199(4):956-965. PubMed ID: 23731256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera.
    Tombesi S; Nardini A; Farinelli D; Palliotti A
    Physiol Plant; 2014 Nov; 152(3):453-64. PubMed ID: 24597791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat.
    Corso D; Delzon S; Lamarque LJ; Cochard H; Torres-Ruiz JM; King A; Brodribb T
    Plant Cell Environ; 2020 Apr; 43(4):854-865. PubMed ID: 31953855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaf hydraulic conductance is linked to leaf symmetry in bifacial, amphistomatic leaves of sunflower.
    Richardson F; Jordan GJ; Brodribb TJ
    J Exp Bot; 2020 May; 71(9):2808-2816. PubMed ID: 31970417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response to dehydration and irrigation in invasive and native saplings: osmotic adjustment versus leaf shedding.
    Yazaki K; Sano Y; Fujikawa S; Nakano T; Ishida A
    Tree Physiol; 2010 May; 30(5):597-607. PubMed ID: 20368340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are flowers vulnerable to xylem cavitation during drought?
    Zhang FP; Brodribb TJ
    Proc Biol Sci; 2017 May; 284(1854):. PubMed ID: 28469026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf Hydraulic Architecture and Stomatal Conductance: A Functional Perspective.
    Rockwell FE; Holbrook NM
    Plant Physiol; 2017 Aug; 174(4):1996-2007. PubMed ID: 28615346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydraulic properties of naturally regenerated beech saplings respond to canopy opening.
    Caquet B; Barigah TS; Cochard H; Montpied P; Collet C; Dreyer E; Epron D
    Tree Physiol; 2009 Nov; 29(11):1395-405. PubMed ID: 19744973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Outside-Xylem Vulnerability, Not Xylem Embolism, Controls Leaf Hydraulic Decline during Dehydration.
    Scoffoni C; Albuquerque C; Brodersen CR; Townes SV; John GP; Bartlett MK; Buckley TN; McElrone AJ; Sack L
    Plant Physiol; 2017 Feb; 173(2):1197-1210. PubMed ID: 28049739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catastrophic hydraulic failure and tipping points in plants.
    Johnson DM; Katul G; Domec JC
    Plant Cell Environ; 2022 Aug; 45(8):2231-2266. PubMed ID: 35394656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.