BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29748990)

  • 1. Annual temperature variation as a time machine to understand the effects of long-term climate change on a poleward range shift.
    Crickenberger S; Wethey DS
    Glob Chang Biol; 2018 Aug; 24(8):3804-3819. PubMed ID: 29748990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competing species in a changing climate: effects of recruitment disturbances on two interacting barnacle species.
    Svensson CJ; Johansson E; Aberg P
    J Anim Ecol; 2006 May; 75(3):765-76. PubMed ID: 16689959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directionality of recent bird distribution shifts and climate change in Great Britain.
    Gillings S; Balmer DE; Fuller RJ
    Glob Chang Biol; 2015 Jun; 21(6):2155-68. PubMed ID: 25482202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change impacts on the conservation outlook of populations on the poleward periphery of species ranges: A case study of Canadian black-tailed prairie dogs (Cynomys ludovicianus).
    Stephens T; Wilson SC; Cassidy F; Bender D; Gummer D; Smith DHV; Lloyd N; McPherson JM; Moehrenschlager A
    Glob Chang Biol; 2018 Feb; 24(2):836-847. PubMed ID: 28976626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Larval tolerance to food limitation is stronger in an exotic barnacle than in its native competitor.
    Griffith K; Jenkins SR; Giménez L
    Zoology (Jena); 2021 Apr; 145():125891. PubMed ID: 33571867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MODELING THE RESPONSE OF POPULATIONS OF COMPETING SPECIES TO CLIMATE CHANGE.
    Poloczanska ES; Hawkins SJ; Southward AJ; Burrows MT
    Ecology; 2008 Nov; 89(11):3138-3149. PubMed ID: 31766801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Annual global mean temperature explains reproductive success in a marine vertebrate from 1955 to 2010.
    Mauck RA; Dearborn DC; Huntington CE
    Glob Chang Biol; 2018 Apr; 24(4):1599-1613. PubMed ID: 29140586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the universal ecological responses to climate change in a univoltine butterfly.
    Fenberg PB; Self A; Stewart JR; Wilson RJ; Brooks SJ
    J Anim Ecol; 2016 May; 85(3):739-48. PubMed ID: 26876243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change.
    Liang Y; Duveneck MJ; Gustafson EJ; Serra-Diaz JM; Thompson JR
    Glob Chang Biol; 2018 Jan; 24(1):e335-e351. PubMed ID: 29034990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demographic consequences of climate change and land cover help explain a history of extirpations and range contraction in a declining snake species.
    Pomara LY; LeDee OE; Martin KJ; Zuckerberg B
    Glob Chang Biol; 2014 Jul; 20(7):2087-99. PubMed ID: 24357530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Population resistance to climate change: modelling the effects of low recruitment in open populations.
    Svensson CJ; Jenkins SR; Hawkins SJ; Aberg P
    Oecologia; 2005 Jan; 142(1):117-26. PubMed ID: 15378344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maintenance of a Genetic Cline in the Barnacle
    Wares JP; Skoczen KM
    Biol Bull; 2019 Jun; 236(3):199-206. PubMed ID: 31167090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition probabilities help identify putative drivers of community change in complex systems.
    Morello SL; Etter RJ
    Ecology; 2018 Jun; 99(6):1357-1369. PubMed ID: 29604059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mangrove expansion and contraction at a poleward range limit: climate extremes and land-ocean temperature gradients.
    Osland MJ; Day RH; Hall CT; Brumfield MD; Dugas JL; Jones WR
    Ecology; 2017 Jan; 98(1):125-137. PubMed ID: 27935029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature drives abundance fluctuations, but spatial dynamics is constrained by landscape configuration: Implications for climate-driven range shift in a butterfly.
    Fourcade Y; Ranius T; Öckinger E
    J Anim Ecol; 2017 Oct; 86(6):1339-1351. PubMed ID: 28796909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How climate, migration ability and habitat fragmentation affect the projected future distribution of European beech.
    Saltré F; Duputié A; Gaucherel C; Chuine I
    Glob Chang Biol; 2015 Feb; 21(2):897-910. PubMed ID: 25330385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong evidence for changing fish reproductive phenology under climate warming on the Tibetan Plateau.
    Tao J; He D; Kennard MJ; Ding C; Bunn SE; Liu C; Jia Y; Che R; Chen Y
    Glob Chang Biol; 2018 May; 24(5):2093-2104. PubMed ID: 29331066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatio-temporal variation of biotic factors underpins contemporary range dynamics of congeners.
    Naujokaitis-Lewis I; Fortin MJ
    Glob Chang Biol; 2016 Mar; 22(3):1201-13. PubMed ID: 26716759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cetacean range and climate in the eastern North Atlantic: future predictions and implications for conservation.
    Lambert E; Pierce GJ; Hall K; Brereton T; Dunn TE; Wall D; Jepson PD; Deaville R; MacLeod CD
    Glob Chang Biol; 2014 Jun; 20(6):1782-93. PubMed ID: 24677422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate warming: a loss of variation in populations can accompany reproductive shifts.
    Massot M; Legendre S; Fédérici P; Clobert J
    Ecol Lett; 2017 Sep; 20(9):1140-1147. PubMed ID: 28712117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.