These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 29749021)
1. Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains. Song L; Guanter L; Guan K; You L; Huete A; Ju W; Zhang Y Glob Chang Biol; 2018 Sep; 24(9):4023-4037. PubMed ID: 29749021 [TBL] [Abstract][Full Text] [Related]
2. Is satellite Sun-Induced Chlorophyll Fluorescence more indicative than vegetation indices under drought condition? Cao J; An Q; Zhang X; Xu S; Si T; Niyogi D Sci Total Environ; 2021 Oct; 792():148396. PubMed ID: 34465046 [TBL] [Abstract][Full Text] [Related]
3. Impacts of drought and heatwave on the terrestrial ecosystem in China as revealed by satellite solar-induced chlorophyll fluorescence. Wang X; Qiu B; Li W; Zhang Q Sci Total Environ; 2019 Nov; 693():133627. PubMed ID: 31377349 [TBL] [Abstract][Full Text] [Related]
4. Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy. Liu L; Yang X; Zhou H; Liu S; Zhou L; Li X; Yang J; Han X; Wu J Sci Total Environ; 2018 Jun; 625():1208-1217. PubMed ID: 29996417 [TBL] [Abstract][Full Text] [Related]
5. Quantifying high-temperature stress on soybean canopy photosynthesis: The unique role of sun-induced chlorophyll fluorescence. Kimm H; Guan K; Burroughs CH; Peng B; Ainsworth EA; Bernacchi CJ; Moore CE; Kumagai E; Yang X; Berry JA; Wu G Glob Chang Biol; 2021 Jun; 27(11):2403-2415. PubMed ID: 33844873 [TBL] [Abstract][Full Text] [Related]
6. Seasonal patterns of canopy photosynthesis captured by remotely sensed sun-induced fluorescence and vegetation indexes in mid-to-high latitude forests: A cross-platform comparison. Lu X; Cheng X; Li X; Chen J; Sun M; Ji M; He H; Wang S; Li S; Tang J Sci Total Environ; 2018 Dec; 644():439-451. PubMed ID: 29981994 [TBL] [Abstract][Full Text] [Related]
7. Enhanced drought detection and monitoring using sun-induced chlorophyll fluorescence over Hulun Buir Grassland, China. Liu Y; Dang C; Yue H; Lyu C; Dang X Sci Total Environ; 2021 May; 770():145271. PubMed ID: 33513493 [TBL] [Abstract][Full Text] [Related]
8. Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests. Walther S; Voigt M; Thum T; Gonsamo A; Zhang Y; Köhler P; Jung M; Varlagin A; Guanter L Glob Chang Biol; 2016 Sep; 22(9):2979-96. PubMed ID: 26683113 [TBL] [Abstract][Full Text] [Related]
9. Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence. Guan K; Berry JA; Zhang Y; Joiner J; Guanter L; Badgley G; Lobell DB Glob Chang Biol; 2016 Feb; 22(2):716-26. PubMed ID: 26490834 [TBL] [Abstract][Full Text] [Related]
10. Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing. Duncan JM; Dash J; Atkinson PM Glob Chang Biol; 2015 Apr; 21(4):1541-51. PubMed ID: 24930864 [TBL] [Abstract][Full Text] [Related]
11. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. Liu B; Asseng S; Liu L; Tang L; Cao W; Zhu Y Glob Chang Biol; 2016 May; 22(5):1890-903. PubMed ID: 26725507 [TBL] [Abstract][Full Text] [Related]
12. Water stress significantly affects the diurnal variation of solar-induced chlorophyll fluorescence (SIF): A case study for winter wheat. Lin J; Zhou L; Wu J; Han X; Zhao B; Chen M; Liu L Sci Total Environ; 2024 Jan; 908():168256. PubMed ID: 37924891 [TBL] [Abstract][Full Text] [Related]
13. Response of dryland vegetation under extreme wet events with satellite measures of greenness and fluorescence. Leng S; Huete A; Cleverly J; Lu X; Ma X; Gao S; Yu Q Sci Total Environ; 2022 Oct; 842():156860. PubMed ID: 35750163 [TBL] [Abstract][Full Text] [Related]
14. Prior crop season management constrains farmer adaptation to warming temperatures: Evidence from the Indo-Gangetic Plains. Ishtiaque A; Singh S; Lobell D; Balwinder-Singh ; Fishman R; Jain M Sci Total Environ; 2022 Feb; 807(Pt 2):151671. PubMed ID: 34801489 [TBL] [Abstract][Full Text] [Related]
15. Predicting grain protein content of field-grown winter wheat with satellite images and partial least square algorithm. Tan C; Zhou X; Zhang P; Wang Z; Wang D; Guo W; Yun F PLoS One; 2020; 15(3):e0228500. PubMed ID: 32160185 [TBL] [Abstract][Full Text] [Related]
16. Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest. Yang H; Yang X; Zhang Y; Heskel MA; Lu X; Munger JW; Sun S; Tang J Glob Chang Biol; 2017 Jul; 23(7):2874-2886. PubMed ID: 27976474 [TBL] [Abstract][Full Text] [Related]
17. Post-heading heat stress and yield impact in winter wheat of China. Liu B; Liu L; Tian L; Cao W; Zhu Y; Asseng S Glob Chang Biol; 2014 Feb; 20(2):372-81. PubMed ID: 24259291 [TBL] [Abstract][Full Text] [Related]
18. Solar-induced chlorophyll fluorescence imperfectly tracks the temperature response of photosynthesis in winter wheat. Chen R; Liu X; Chen J; Du S; Liu L J Exp Bot; 2022 Dec; 73(22):7596-7610. PubMed ID: 36173362 [TBL] [Abstract][Full Text] [Related]
19. Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies. Pinto F; Damm A; Schickling A; Panigada C; Cogliati S; Müller-Linow M; Balvora A; Rascher U Plant Cell Environ; 2016 Jul; 39(7):1500-12. PubMed ID: 26763162 [TBL] [Abstract][Full Text] [Related]
20. Heat priming effects on anthesis heat stress in wheat cultivars (Triticum aestivum L.) with contrasting tolerance to heat stress. Mendanha T; Rosenqvist E; Hyldgaard B; Ottosen CO Plant Physiol Biochem; 2018 Nov; 132():213-221. PubMed ID: 30216779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]