BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 29749092)

  • 1. Beyond insects: current status and achievements of RNA interference in mite pests and future perspectives.
    Niu J; Shen G; Christiaens O; Smagghe G; He L; Wang J
    Pest Manag Sci; 2018 Dec; 74(12):2680-2687. PubMed ID: 29749092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNAi-based reverse genetics in the chelicerate model Tetranychus urticae: A comparative analysis of five methods for gene silencing.
    Suzuki T; Nunes MA; EspaƱa MU; Namin HH; Jin P; Bensoussan N; Zhurov V; Rahman T; De Clercq R; Hilson P; Grbic V; Grbic M
    PLoS One; 2017; 12(7):e0180654. PubMed ID: 28704448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNAi-mediated plant protection against aphids.
    Yu XD; Liu ZC; Huang SL; Chen ZQ; Sun YW; Duan PF; Ma YZ; Xia LQ
    Pest Manag Sci; 2016 Jun; 72(6):1090-8. PubMed ID: 26888776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes.
    Zotti M; Dos Santos EA; Cagliari D; Christiaens O; Taning CNT; Smagghe G
    Pest Manag Sci; 2018 Jun; 74(6):1239-1250. PubMed ID: 29194942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transplastomic tomatoes expressing double-stranded RNA against a conserved gene are efficiently protected from multiple spider mites.
    Wu M; Zhang Q; Dong Y; Wang Z; Zhan W; Ke Z; Li S; He L; Ruf S; Bock R; Zhang J
    New Phytol; 2023 Feb; 237(4):1363-1373. PubMed ID: 36328788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant insects and mites uptake double-stranded RNA upon its exogenous application on tomato leaves.
    Gogoi A; Sarmah N; Kaldis A; Perdikis D; Voloudakis A
    Planta; 2017 Dec; 246(6):1233-1241. PubMed ID: 28924923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development of an egg-soaking method for delivering dsRNAs into spider mites.
    Yang J; Zhang Y; Zhang Z; Ren M; Wang Y; Duan Y; Gao Y; Liu Z; Zhang P; Fan R; Zhou X
    Pestic Biochem Physiol; 2024 May; 201():105905. PubMed ID: 38685227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control.
    Zhang H; Li HC; Miao XX
    Insect Sci; 2013 Feb; 20(1):15-30. PubMed ID: 23955822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in the use of the RNA interference technique in Hemiptera.
    Li J; Wang XP; Wang MQ; Ma WH; Hua HX
    Insect Sci; 2013 Feb; 20(1):31-9. PubMed ID: 23955823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNAi-mediated crop protection against insects.
    Price DR; Gatehouse JA
    Trends Biotechnol; 2008 Jul; 26(7):393-400. PubMed ID: 18501983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oral delivery of double-stranded RNA induces prolonged and systemic gene knockdown in Metaseiulus occidentalis only after feeding on Tetranychus urticae.
    Wu K; Hoy MA
    Exp Appl Acarol; 2014 Jun; 63(2):171-87. PubMed ID: 24509787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNAi for insect control: current perspective and future challenges.
    Katoch R; Sethi A; Thakur N; Murdock LL
    Appl Biochem Biotechnol; 2013 Oct; 171(4):847-73. PubMed ID: 23904259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA interference in insects: the link between antiviral defense and pest control.
    Niu J; Chen R; Wang JJ
    Insect Sci; 2024 Feb; 31(1):2-12. PubMed ID: 37162315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current scenario of RNAi-based hemipteran control.
    Jain RG; Robinson KE; Asgari S; Mitter N
    Pest Manag Sci; 2021 May; 77(5):2188-2196. PubMed ID: 33099867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for enhancing the efficiency of RNA interference in insects.
    Silver K; Cooper AM; Zhu KY
    Pest Manag Sci; 2021 Jun; 77(6):2645-2658. PubMed ID: 33440063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards an understanding of the molecular basis of effective RNAi against a global insect pest, the whitefly Bemisia tabaci.
    Luo Y; Chen Q; Luan J; Chung SH; Van Eck J; Turgeon R; Douglas AE
    Insect Biochem Mol Biol; 2017 Sep; 88():21-29. PubMed ID: 28736300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tribolium castaneum as a model for high-throughput RNAi screening.
    Knorr E; Bingsohn L; Kanost MR; Vilcinskas A
    Adv Biochem Eng Biotechnol; 2013; 136():163-78. PubMed ID: 23748349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review.
    Huvenne H; Smagghe G
    J Insect Physiol; 2010 Mar; 56(3):227-35. PubMed ID: 19837076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusion dsRNA designs incorporating multiple target sequences can enhance the aphid control capacity of an RNAi-based strategy.
    Wang ZG; Qin CY; Chen Y; Yu XY; Chen RY; Niu J; Wang JJ
    Pest Manag Sci; 2024 Jun; 80(6):2689-2697. PubMed ID: 38327015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. siRNAs and piRNAs collaborate for transposon control in the two-spotted spider mite.
    Mondal M; Mansfield K; Flynt A
    RNA; 2018 Jul; 24(7):899-907. PubMed ID: 29678924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.