These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 29749092)
1. Beyond insects: current status and achievements of RNA interference in mite pests and future perspectives. Niu J; Shen G; Christiaens O; Smagghe G; He L; Wang J Pest Manag Sci; 2018 Dec; 74(12):2680-2687. PubMed ID: 29749092 [TBL] [Abstract][Full Text] [Related]
2. RNAi-based reverse genetics in the chelicerate model Tetranychus urticae: A comparative analysis of five methods for gene silencing. Suzuki T; Nunes MA; EspaƱa MU; Namin HH; Jin P; Bensoussan N; Zhurov V; Rahman T; De Clercq R; Hilson P; Grbic V; Grbic M PLoS One; 2017; 12(7):e0180654. PubMed ID: 28704448 [TBL] [Abstract][Full Text] [Related]
3. RNAi-mediated plant protection against aphids. Yu XD; Liu ZC; Huang SL; Chen ZQ; Sun YW; Duan PF; Ma YZ; Xia LQ Pest Manag Sci; 2016 Jun; 72(6):1090-8. PubMed ID: 26888776 [TBL] [Abstract][Full Text] [Related]
4. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Zotti M; Dos Santos EA; Cagliari D; Christiaens O; Taning CNT; Smagghe G Pest Manag Sci; 2018 Jun; 74(6):1239-1250. PubMed ID: 29194942 [TBL] [Abstract][Full Text] [Related]
5. Transplastomic tomatoes expressing double-stranded RNA against a conserved gene are efficiently protected from multiple spider mites. Wu M; Zhang Q; Dong Y; Wang Z; Zhan W; Ke Z; Li S; He L; Ruf S; Bock R; Zhang J New Phytol; 2023 Feb; 237(4):1363-1373. PubMed ID: 36328788 [TBL] [Abstract][Full Text] [Related]
6. Plant insects and mites uptake double-stranded RNA upon its exogenous application on tomato leaves. Gogoi A; Sarmah N; Kaldis A; Perdikis D; Voloudakis A Planta; 2017 Dec; 246(6):1233-1241. PubMed ID: 28924923 [TBL] [Abstract][Full Text] [Related]
7. The development of an egg-soaking method for delivering dsRNAs into spider mites. Yang J; Zhang Y; Zhang Z; Ren M; Wang Y; Duan Y; Gao Y; Liu Z; Zhang P; Fan R; Zhou X Pestic Biochem Physiol; 2024 May; 201():105905. PubMed ID: 38685227 [TBL] [Abstract][Full Text] [Related]
8. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control. Zhang H; Li HC; Miao XX Insect Sci; 2013 Feb; 20(1):15-30. PubMed ID: 23955822 [TBL] [Abstract][Full Text] [Related]
9. Advances in the use of the RNA interference technique in Hemiptera. Li J; Wang XP; Wang MQ; Ma WH; Hua HX Insect Sci; 2013 Feb; 20(1):31-9. PubMed ID: 23955823 [TBL] [Abstract][Full Text] [Related]
11. Oral delivery of double-stranded RNA induces prolonged and systemic gene knockdown in Metaseiulus occidentalis only after feeding on Tetranychus urticae. Wu K; Hoy MA Exp Appl Acarol; 2014 Jun; 63(2):171-87. PubMed ID: 24509787 [TBL] [Abstract][Full Text] [Related]
13. RNA interference in insects: the link between antiviral defense and pest control. Niu J; Chen R; Wang JJ Insect Sci; 2024 Feb; 31(1):2-12. PubMed ID: 37162315 [TBL] [Abstract][Full Text] [Related]
14. Current scenario of RNAi-based hemipteran control. Jain RG; Robinson KE; Asgari S; Mitter N Pest Manag Sci; 2021 May; 77(5):2188-2196. PubMed ID: 33099867 [TBL] [Abstract][Full Text] [Related]
15. Strategies for enhancing the efficiency of RNA interference in insects. Silver K; Cooper AM; Zhu KY Pest Manag Sci; 2021 Jun; 77(6):2645-2658. PubMed ID: 33440063 [TBL] [Abstract][Full Text] [Related]
16. Towards an understanding of the molecular basis of effective RNAi against a global insect pest, the whitefly Bemisia tabaci. Luo Y; Chen Q; Luan J; Chung SH; Van Eck J; Turgeon R; Douglas AE Insect Biochem Mol Biol; 2017 Sep; 88():21-29. PubMed ID: 28736300 [TBL] [Abstract][Full Text] [Related]
17. Tribolium castaneum as a model for high-throughput RNAi screening. Knorr E; Bingsohn L; Kanost MR; Vilcinskas A Adv Biochem Eng Biotechnol; 2013; 136():163-78. PubMed ID: 23748349 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. Huvenne H; Smagghe G J Insect Physiol; 2010 Mar; 56(3):227-35. PubMed ID: 19837076 [TBL] [Abstract][Full Text] [Related]
19. Fusion dsRNA designs incorporating multiple target sequences can enhance the aphid control capacity of an RNAi-based strategy. Wang ZG; Qin CY; Chen Y; Yu XY; Chen RY; Niu J; Wang JJ Pest Manag Sci; 2024 Jun; 80(6):2689-2697. PubMed ID: 38327015 [TBL] [Abstract][Full Text] [Related]
20. siRNAs and piRNAs collaborate for transposon control in the two-spotted spider mite. Mondal M; Mansfield K; Flynt A RNA; 2018 Jul; 24(7):899-907. PubMed ID: 29678924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]