BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 29749141)

  • 1. Particle swarm optimization method for small retinal vessels detection on multiresolution fundus images.
    Khomri B; Christodoulidis A; Djerou L; Babahenini MC; Cheriet F
    J Biomed Opt; 2018 May; 23(5):1-13. PubMed ID: 29749141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new robust method for blood vessel segmentation in retinal fundus images based on weighted line detector and hidden Markov model.
    Zhou C; Zhang X; Chen H
    Comput Methods Programs Biomed; 2020 Apr; 187():105231. PubMed ID: 31786454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-scale tensor voting approach for small retinal vessel segmentation in high resolution fundus images.
    Christodoulidis A; Hurtut T; Tahar HB; Cheriet F
    Comput Med Imaging Graph; 2016 Sep; 52():28-43. PubMed ID: 27341026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Automatic detection of vessels in color fundus images].
    Jiménez S; Alemany P; Fondón I; Foncubierta A; Acha B; Serrano C
    Arch Soc Esp Oftalmol; 2010 Mar; 85(3):103-9. PubMed ID: 20619121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leveraging Multiscale Hessian-Based Enhancement With a Novel Exudate Inpainting Technique for Retinal Vessel Segmentation.
    Annunziata R; Garzelli A; Ballerini L; Mecocci A; Trucco E
    IEEE J Biomed Health Inform; 2016 Jul; 20(4):1129-38. PubMed ID: 26054078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmenting retinal vessels with revised top-bottom-hat transformation and flattening of minimum circumscribed ellipse.
    Wang W; Wang W; Hu Z
    Med Biol Eng Comput; 2019 Jul; 57(7):1481-1496. PubMed ID: 30903529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle Swarm Optimization and Salp Swarm Algorithm for the Segmentation of Diabetic Retinal Blood Vessel Images.
    Deng L; Liu S; Wang X; Zhao G; Xu J
    Comput Intell Neurosci; 2022; 2022():1936482. PubMed ID: 36052032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iterative Vessel Segmentation of Fundus Images.
    Roychowdhury S; Koozekanani DD; Parhi KK
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1738-49. PubMed ID: 25700436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood vessel segmentation in color fundus images based on regional and Hessian features.
    Shah SAA; Tang TB; Faye I; Laude A
    Graefes Arch Clin Exp Ophthalmol; 2017 Aug; 255(8):1525-1533. PubMed ID: 28474130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Subimage Classification.
    Roychowdhury S; Koozekanani DD; Parhi KK
    IEEE J Biomed Health Inform; 2015 May; 19(3):1118-28. PubMed ID: 25014980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images.
    Roychowdhury S; Koozekanani DD; Kuchinka SN; Parhi KK
    IEEE J Biomed Health Inform; 2016 Nov; 20(6):1562-1574. PubMed ID: 26316237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust Hidden Markov Model based intelligent blood vessel detection of fundus images.
    Hassan M; Amin M; Murtza I; Khan A; Chaudhry A
    Comput Methods Programs Biomed; 2017 Nov; 151():193-201. PubMed ID: 28947001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DAVS-NET: Dense Aggregation Vessel Segmentation Network for retinal vasculature detection in fundus images.
    Raza M; Naveed K; Akram A; Salem N; Afaq A; Madni HA; Khan MAU; Din MZ
    PLoS One; 2021; 16(12):e0261698. PubMed ID: 34972109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel retinal vessel detection approach based on multiple deep convolution neural networks.
    Guo Y; Budak Ü; Şengür A
    Comput Methods Programs Biomed; 2018 Dec; 167():43-48. PubMed ID: 30501859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale Joint Optimization Strategy for Retinal Vascular Segmentation.
    Yan M; Zhou J; Luo C; Xu T; Xing X
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing fine retinal vessel segmentation: Morphological reconstruction and double thresholds filtering strategy.
    Abdushkour H; Soomro TA; Ali A; Ali Jandan F; Jelinek H; Memon F; Althobiani F; Mohammed Ghonaim S; Irfan M
    PLoS One; 2023; 18(7):e0288792. PubMed ID: 37467245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [New Approach of Fundus Image Segmentation Evaluation Based on Topology Structure].
    Sheng H; Dai P; Liu Z; Zhang-Wen M; Zhao Y; Fan M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Oct; 32(5):1100-5. PubMed ID: 26964319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques.
    Akyol K; Şen B; Bayır Ş
    Comput Math Methods Med; 2016; 2016():6814791. PubMed ID: 27110272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network-based features for retinal fundus vessel structure analysis.
    Amil P; Reyes-Manzano CF; Guzmán-Vargas L; Sendiña-Nadal I; Masoller C
    PLoS One; 2019; 14(7):e0220132. PubMed ID: 31344132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood Vessel Segmentation of Fundus Retinal Images Based on Improved Frangi and Mathematical Morphology.
    Tian F; Li Y; Wang J; Chen W
    Comput Math Methods Med; 2021; 2021():4761517. PubMed ID: 34122614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.