These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 29749345)

  • 1. Reply to Comment on 'Nanoscale mapping of optical band gaps using monochromated electron energy loss spectroscopy'.
    Zhan W; Granerød CS; Venkatachalapathy V; Johansen KMH; Jensen IJT; Kuznetsov AY; Prytz Ø
    Nanotechnology; 2018 Aug; 29(31):318002. PubMed ID: 29749345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on 'Nanoscale mapping of optical band gaps using monochromated electron energy loss spectroscopy'.
    Walther T
    Nanotechnology; 2018 Aug; 29(31):318001. PubMed ID: 29457780
    [No Abstract]   [Full Text] [Related]  

  • 3. Nanoscale mapping of optical band gaps using monochromated electron energy loss spectroscopy.
    Zhan W; Granerød CS; Venkatachalapathy V; Johansen KMH; Jensen IJT; Kuznetsov AY; Prytz Ø
    Nanotechnology; 2017 Mar; 28(10):105703. PubMed ID: 28085004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Band gap maps beyond the delocalization limit: correlation between optical band gaps and plasmon energies at the nanoscale.
    Zhan W; Venkatachalapathy V; Aarholt T; Kuznetsov AY; Prytz Ø
    Sci Rep; 2018 Jan; 8(1):848. PubMed ID: 29339788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the capabilities of monochromated electron energy loss spectroscopy in the infrared regime.
    Hachtel JA; Lupini AR; Idrobo JC
    Sci Rep; 2018 Apr; 8(1):5637. PubMed ID: 29618757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring bandgap states in individual non-stoichiometric oxide nanoparticles using monochromated STEM EELS: The Praseodymium-ceria case.
    Bowman WJ; March K; Hernandez CA; Crozier PA
    Ultramicroscopy; 2016 Aug; 167():5-10. PubMed ID: 27152715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valence electron energy-loss spectroscopy in monochromated scanning transmission electron microscopy.
    Erni R; Browning ND
    Ultramicroscopy; 2005 Oct; 104(3-4):176-92. PubMed ID: 15885909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated approaches for band gap mapping in STEM-EELS.
    Granerød CS; Zhan W; Prytz Ø
    Ultramicroscopy; 2018 Jan; 184(Pt A):39-45. PubMed ID: 28843183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale mapping of plasmon resonances of functional multibranched gold nanoparticles.
    Mayoral A; Magen C; Jose-Yacaman M
    Chem Commun (Camb); 2012 Sep; 48(69):8667-9. PubMed ID: 22820550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron energy-loss spectroscopy of single nanocrystals: mapping of tin allotropes.
    Roesgaard S; Ramasse Q; Chevallier J; Fyhn M; Julsgaard B
    Nanotechnology; 2018 May; 29(21):215707. PubMed ID: 29521282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reply to "Comment on 'Identification of a superoxide in superconducting La2CuO4+ delta by x-ray photoelectron spectroscopy' ".
    Rogers Jr ; Shinn ND; Schirber JE; Venturini EL; Ginley DS; Morosin B
    Phys Rev B Condens Matter; 1989 Jun; 39(16):12334-12335. PubMed ID: 9948084
    [No Abstract]   [Full Text] [Related]  

  • 12. Reply to "Comment on 'Temperature-induced structural phase transition in CaBr2 studied by Raman spectroscopy' ".
    Raptis C; McGreevy RL
    Phys Rev B Condens Matter; 1991 May; 43(15):12668-12669. PubMed ID: 9997079
    [No Abstract]   [Full Text] [Related]  

  • 13. Quantification of the size-dependent energy gap of individual CdSe quantum dots by valence electron energy-loss spectroscopy.
    Erni R; Browning ND
    Ultramicroscopy; 2007; 107(2-3):267-73. PubMed ID: 16996213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reply to "Comment on 'Variation of Cu-O charge-transfer energies in YBa2Cu3O7-x thin films studied by photoemission spectroscopy' ".
    Yeh J
    Phys Rev B Condens Matter; 1992 May; 45(18):10816-10817. PubMed ID: 10000997
    [No Abstract]   [Full Text] [Related]  

  • 15. Derivation of optical properties of carbonaceous aerosols by monochromated electron energy-loss spectroscopy.
    Zhu J; Crozier PA; Ercius P; Anderson JR
    Microsc Microanal; 2014 Jun; 20(3):748-59. PubMed ID: 24735494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain and size combined effects on the GaN band structure: VEELS and DFT study.
    Benaissa M; Sigle W; Zaari H; Tadout M; van Aken PA
    Phys Chem Chem Phys; 2017 Feb; 19(7):5430-5434. PubMed ID: 28165089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of monochromated TEM for ultimate resolution imaging and ultrahigh resolution electron energy loss spectroscopy.
    Lopatin S; Cheng B; Liu WT; Tsai ML; He JH; Chuvilin A
    Ultramicroscopy; 2018 Jan; 184(Pt A):109-115. PubMed ID: 28886488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Čerenkov limit of Si, GaAs and GaP in electron energy loss spectrometry.
    Horák M; Stöger-Pollach M
    Ultramicroscopy; 2015 Oct; 157():73-8. PubMed ID: 26094202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmission electron microscopy at 20 kV for imaging and spectroscopy.
    Kaiser U; Biskupek J; Meyer JC; Leschner J; Lechner L; Rose H; Stöger-Pollach M; Khlobystov AN; Hartel P; Müller H; Haider M; Eyhusen S; Benner G
    Ultramicroscopy; 2011 Jul; 111(8):1239-46. PubMed ID: 21801697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of resolution in core-loss and low-loss spectroscopy in a monochromated microscope.
    Lazar S; Botton GA; Zandbergen HW
    Ultramicroscopy; 2006; 106(11-12):1091-103. PubMed ID: 16872750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.