These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 29749409)

  • 21. Understanding of Surface Redox Behaviors of Li2MnO3 in Li-Ion Batteries: First-Principles Prediction and Experimental Validation.
    Kim D; Lim JM; Lim YG; Park MS; Kim YJ; Cho M; Cho K
    ChemSusChem; 2015 Oct; 8(19):3255-62. PubMed ID: 26289748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries.
    Sun YK; Myung ST; Kim MH; Prakash J; Amine K
    J Am Chem Soc; 2005 Sep; 127(38):13411-8. PubMed ID: 16173775
    [TBL] [Abstract][Full Text] [Related]  

  • 23. First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries.
    Xu Q; Ban C; Dillon AC; Wei SH; Zhao Y
    J Phys Chem Lett; 2011 May; 2(10):1129-32. PubMed ID: 26295314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study.
    Kim H; Park I; Seo DH; Lee S; Kim SW; Kwon WJ; Park YU; Kim CS; Jeon S; Kang K
    J Am Chem Soc; 2012 Jun; 134(25):10369-72. PubMed ID: 22667817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AlF3 surface-coated Li[Li0.2 Ni0.17 Co0.07 Mn0.56 ]O2 nanoparticles with superior electrochemical performance for lithium-ion batteries.
    Sun S; Yin Y; Wan N; Wu Q; Zhang X; Pan D; Bai Y; Lu X
    ChemSusChem; 2015 Aug; 8(15):2544-50. PubMed ID: 26105748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrodes with high power and high capacity for rechargeable lithium batteries.
    Kang K; Meng YS; Bréger J; Grey CP; Ceder G
    Science; 2006 Feb; 311(5763):977-80. PubMed ID: 16484487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Porous cobalt-manganese oxide nanocubes derived from metal organic frameworks as a cathode catalyst for rechargeable Li-O2 batteries.
    Zhang J; Wang L; Xu L; Ge X; Zhao X; Lai M; Liu Z; Chen W
    Nanoscale; 2015 Jan; 7(2):720-6. PubMed ID: 25429438
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-assembled alluaudite Na(2)Fe(3-x)Mn(x)(PO4)(3) micro/nanocompounds for sodium-ion battery electrodes: a new insight into their electronic and geometric structure.
    Huang W; Li B; Saleem MF; Wu X; Li J; Lin J; Xia D; Chu W; Wu Z
    Chemistry; 2015 Jan; 21(2):851-60. PubMed ID: 25371385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparative study of graphite electrodes using the co-intercalation phenomenon for rechargeable Li, Na and K batteries.
    Kim H; Yoon G; Lim K; Kang K
    Chem Commun (Camb); 2016 Oct; 52(85):12618-12621. PubMed ID: 27709171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Defect Thermodynamics in Nonstoichiometric Alluaudite-Based Polyanionic Materials for Na-Ion Batteries.
    Watcharatharapong T; Chakraborty S; Ahuja R
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32856-32868. PubMed ID: 31353884
    [TBL] [Abstract][Full Text] [Related]  

  • 32. X-ray absorption spectroscopic study on the electronic structure of Li(1)(-)(x)()CoPO(4) electrodes as 4.8 V positive electrodes for rechargeable lithium ion batteries.
    Nakayama M; Goto S; Uchimoto Y; Wakihara M; Kitajima Y; Miyanaga T; Watanabe I
    J Phys Chem B; 2005 Jun; 109(22):11197-203. PubMed ID: 16852366
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Passivation Layer and Cathodic Redox Reactions in Sodium-Ion Batteries Probed by HAXPES.
    Doubaji S; Philippe B; Saadoune I; Gorgoi M; Gustafsson T; Solhy A; Valvo M; Rensmo H; Edström K
    ChemSusChem; 2016 Jan; 9(1):97-108. PubMed ID: 26692568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Li(V0.5Ti0.5)S2 as a 1 V lithium intercalation electrode.
    Clark SJ; Wang D; Armstrong AR; Bruce PG
    Nat Commun; 2016 Mar; 7():10898. PubMed ID: 26996753
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries.
    Nayak PK; Levi E; Grinblat J; Levi M; Markovsky B; Munichandraiah N; Sun YK; Aurbach D
    ChemSusChem; 2016 Sep; 9(17):2404-13. PubMed ID: 27530465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sodium-ion diffusion mechanisms in the low cost high voltage cathode material Na(2+δ)Fe(2-δ/2)(SO4)3.
    Wong LL; Chen HM; Adams S
    Phys Chem Chem Phys; 2015 Apr; 17(14):9186-93. PubMed ID: 25757515
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recovery of valuable elements from spent Li-batteries.
    Paulino JF; Busnardo NG; Afonso JC
    J Hazard Mater; 2008 Feb; 150(3):843-9. PubMed ID: 18054156
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of the manganese and cobalt content on the electrochemical performance of P2-Na
    Hemalatha K; Jayakumar M; Prakash AS
    Dalton Trans; 2018 Jan; 47(4):1223-1232. PubMed ID: 29299569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors.
    Wang X; Kajiyama S; Iinuma H; Hosono E; Oro S; Moriguchi I; Okubo M; Yamada A
    Nat Commun; 2015 Apr; 6():6544. PubMed ID: 25832913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolution of strategies for modern rechargeable batteries.
    Goodenough JB
    Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.