These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 29749573)
1. Tone-Evoked Acoustic Change Complex (ACC) Recorded in a Sedated Animal Model. Presacco A; Middlebrooks JC J Assoc Res Otolaryngol; 2018 Aug; 19(4):451-466. PubMed ID: 29749573 [TBL] [Abstract][Full Text] [Related]
2. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training. Nikjeh DA; Lister JJ; Frisch SA Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778 [TBL] [Abstract][Full Text] [Related]
3. A new auditory threshold estimation technique for low frequencies: proof of concept. Lichtenhan JT; Cooper NP; Guinan JJ Ear Hear; 2013; 34(1):42-51. PubMed ID: 22874644 [TBL] [Abstract][Full Text] [Related]
4. Can the acoustic change complex be recorded in an individual with a cochlear implant? Separating neural responses from cochlear implant artifact. Martin BA J Am Acad Audiol; 2007 Feb; 18(2):126-40. PubMed ID: 17402299 [TBL] [Abstract][Full Text] [Related]
5. Cortical potentials evoked by tone frequency changes can predict speech perception in noise. Vonck BMD; van Heteren JAA; Lammers MJW; de Jel DVC; Schaake WAA; van Zanten GA; Stokroos RJ; Versnel H Hear Res; 2022 Jul; 420():108508. PubMed ID: 35477512 [TBL] [Abstract][Full Text] [Related]
6. Cortical, auditory, evoked potentials in response to changes of spectrum and amplitude. Martin BA; Boothroyd A J Acoust Soc Am; 2000 Apr; 107(4):2155-61. PubMed ID: 10790041 [TBL] [Abstract][Full Text] [Related]
7. Intensity changes in a continuous tone: auditory cortical potentials comparison with frequency changes. Dimitrijevic A; Lolli B; Michalewski HJ; Pratt H; Zeng FG; Starr A Clin Neurophysiol; 2009 Feb; 120(2):374-83. PubMed ID: 19112047 [TBL] [Abstract][Full Text] [Related]
8. Acoustically evoked auditory change complex in children with auditory neuropathy spectrum disorder: a potential objective tool for identifying cochlear implant candidates. He S; Grose JH; Teagle HF; Woodard J; Park LR; Hatch DR; Roush P; Buchman CA Ear Hear; 2015; 36(3):289-301. PubMed ID: 25422994 [TBL] [Abstract][Full Text] [Related]
9. Does the ACC have potential as an index of early speech discrimination ability? A preliminary study in 4-month-old infants with normal hearing. Small SA; Werker JF Ear Hear; 2012; 33(6):e59-69. PubMed ID: 22785572 [TBL] [Abstract][Full Text] [Related]
10. Cortical Auditory Evoked Potentials Recorded From Nucleus Hybrid Cochlear Implant Users. Brown CJ; Jeon EK; Chiou LK; Kirby B; Karsten SA; Turner CW; Abbas PJ Ear Hear; 2015; 36(6):723-32. PubMed ID: 26295607 [TBL] [Abstract][Full Text] [Related]
11. Cortical Processing of Frequency Changes Reflected by the Acoustic Change Complex in Adult Cochlear Implant Users. Liang C; Houston LM; Samy RN; Abedelrehim LMI; Zhang F Audiol Neurootol; 2018; 23(3):152-164. PubMed ID: 30300882 [TBL] [Abstract][Full Text] [Related]
12. The effects of nembutal anesthesia on the auditory steady-state response (ASSR) from the inferior colliculus and auditory cortex of the chinchilla. Szalda K; Burkard R Hear Res; 2005 May; 203(1-2):32-44. PubMed ID: 15855028 [TBL] [Abstract][Full Text] [Related]
13. Cortical Auditory Evoked Potentials in Response to Frequency Changes with Varied Magnitude, Rate, and Direction. Vonck BMD; Lammers MJW; van der Waals M; van Zanten GA; Versnel H J Assoc Res Otolaryngol; 2019 Oct; 20(5):489-498. PubMed ID: 31168759 [TBL] [Abstract][Full Text] [Related]
14. Effects of Long-Term Musical Training on Cortical Auditory Evoked Potentials. Brown CJ; Jeon EK; Driscoll V; Mussoi B; Deshpande SB; Gfeller K; Abbas PJ Ear Hear; 2017; 38(2):e74-e84. PubMed ID: 28225736 [TBL] [Abstract][Full Text] [Related]
15. Bigger Is Better: Increasing Cortical Auditory Response Amplitude Via Stimulus Spectral Complexity. Bardy F; Van Dun B; Dillon H Ear Hear; 2015; 36(6):677-87. PubMed ID: 26039014 [TBL] [Abstract][Full Text] [Related]
16. Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. I. Intensity dependence of firing rate and response latency. Raggio MW; Schreiner CE J Neurophysiol; 1994 Nov; 72(5):2334-59. PubMed ID: 7884463 [TBL] [Abstract][Full Text] [Related]
17. Cortical processing of location and frequency changes of sounds in normal hearing listeners. Zhang F; McGuire K; Firestone G; Dalrymple K; Greinwald J; Fu QJ Hear Res; 2021 Feb; 400():108110. PubMed ID: 33220506 [TBL] [Abstract][Full Text] [Related]
18. Stimulus presentation strategies for eliciting the acoustic change complex: increasing efficiency. Martin BA; Boothroyd A; Ali D; Leach-Berth T Ear Hear; 2010 Jun; 31(3):356-66. PubMed ID: 20440114 [TBL] [Abstract][Full Text] [Related]
19. Distortion product emissions in humans. I. Basic properties in normally hearing subjects. Lonsbury-Martin BL; Harris FP; Stagner BB; Hawkins MD; Martin GK Ann Otol Rhinol Laryngol Suppl; 1990 May; 147():3-14. PubMed ID: 2110797 [TBL] [Abstract][Full Text] [Related]
20. Deconvolution of overlapping cortical auditory evoked potentials recorded using short stimulus onset-asynchrony ranges. Bardy F; Van Dun B; Dillon H; McMahon CM Clin Neurophysiol; 2014 Apr; 125(4):814-826. PubMed ID: 24269614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]