BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 29749693)

  • 1. Modeling the complex etiology of holoprosencephaly in mice.
    Hong M; Krauss RS
    Am J Med Genet C Semin Med Genet; 2018 Jun; 178(2):140-150. PubMed ID: 29749693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cdon mutation and fetal ethanol exposure synergize to produce midline signaling defects and holoprosencephaly spectrum disorders in mice.
    Hong M; Krauss RS
    PLoS Genet; 2012; 8(10):e1002999. PubMed ID: 23071453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rescue of holoprosencephaly in fetal alcohol-exposed Cdon mutant mice by reduced gene dosage of Ptch1.
    Hong M; Krauss RS
    PLoS One; 2013; 8(11):e79269. PubMed ID: 24244464
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Hong M; Christ A; Christa A; Willnow TE; Krauss RS
    Elife; 2020 Sep; 9():. PubMed ID: 32876567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BOC is a modifier gene in holoprosencephaly.
    Hong M; Srivastava K; Kim S; Allen BL; Leahy DJ; Hu P; Roessler E; Krauss RS; Muenke M
    Hum Mutat; 2017 Nov; 38(11):1464-1470. PubMed ID: 28677295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boc modifies the holoprosencephaly spectrum of Cdo mutant mice.
    Zhang W; Hong M; Bae GU; Kang JS; Krauss RS
    Dis Model Mech; 2011 May; 4(3):368-80. PubMed ID: 21183473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Murine models of holoprosencephaly.
    Schachter KA; Krauss RS
    Curr Top Dev Biol; 2008; 84():139-70. PubMed ID: 19186244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of Tgif function causes holoprosencephaly by disrupting the SHH signaling pathway.
    Taniguchi K; Anderson AE; Sutherland AE; Wotton D
    PLoS Genet; 2012; 8(2):e1002524. PubMed ID: 22383895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functions of TGIF homeodomain proteins and their roles in normal brain development and holoprosencephaly.
    Wotton D; Taniguchi K
    Am J Med Genet C Semin Med Genet; 2018 Jun; 178(2):128-139. PubMed ID: 29749689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gli2 gene-environment interactions contribute to the etiological complexity of holoprosencephaly: evidence from a mouse model.
    Heyne GW; Everson JL; Ansen-Wilson LJ; Melberg CG; Fink DM; Parins KF; Doroodchi P; Ulschmid CM; Lipinski RJ
    Dis Model Mech; 2016 Nov; 9(11):1307-1315. PubMed ID: 27585885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Holoprosencephaly: signaling interactions between the brain and the face, the environment and the genes, and the phenotypic variability in animal models and humans.
    Petryk A; Graf D; Marcucio R
    Wiley Interdiscip Rev Dev Biol; 2015; 4(1):17-32. PubMed ID: 25339593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Common genetic causes of holoprosencephaly are limited to a small set of evolutionarily conserved driver genes of midline development coordinated by TGF-β, hedgehog, and FGF signaling.
    Roessler E; Hu P; Marino J; Hong S; Hart R; Berger S; Martinez A; Abe Y; Kruszka P; Thomas JW; Mullikin JC; ; Wang Y; Wong WSW; Niederhuber JE; Solomon BD; Richieri-Costa A; Ribeiro-Bicudo LA; Muenke M
    Hum Mutat; 2018 Oct; 39(10):1416-1427. PubMed ID: 29992659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mouse models of holoprosencephaly.
    Hayhurst M; McConnell SK
    Curr Opin Neurol; 2003 Apr; 16(2):135-41. PubMed ID: 12644739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NODAL and SHH dose-dependent double inhibition promotes an HPE-like phenotype in chick embryos.
    Mercier S; David V; Ratié L; Gicquel I; Odent S; Dupé V
    Dis Model Mech; 2013 Mar; 6(2):537-43. PubMed ID: 23264560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ectopic sonic hedgehog signaling impairs telencephalic dorsal midline development: implication for human holoprosencephaly.
    Huang X; Litingtung Y; Chiang C
    Hum Mol Genet; 2007 Jun; 16(12):1454-68. PubMed ID: 17468181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracephalic manifestations of nonchromosomal, nonsyndromic holoprosencephaly.
    Martinez AF; Kruszka PS; Muenke M
    Am J Med Genet C Semin Med Genet; 2018 Jun; 178(2):246-257. PubMed ID: 29761634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic and Molecular Analyses indicate independent effects of TGIFs on Nodal and Gli3 in neural tube patterning.
    Taniguchi K; Anderson AE; Melhuish TA; Carlton AL; Manukyan A; Sutherland AE; Wotton D
    Eur J Hum Genet; 2017 Feb; 25(2):208-215. PubMed ID: 27924807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations in Hedgehog acyltransferase (Hhat) perturb Hedgehog signaling, resulting in severe acrania-holoprosencephaly-agnathia craniofacial defects.
    Dennis JF; Kurosaka H; Iulianella A; Pace J; Thomas N; Beckham S; Williams T; Trainor PA
    PLoS Genet; 2012; 8(10):e1002927. PubMed ID: 23055936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of the Sonic hedgehog (SHH ) gene during early human development and phenotypic expression of new mutations causing holoprosencephaly.
    Odent S; Atti-Bitach T; Blayau M; Mathieu M; Aug J; Delezo de AL; Gall JY; Le Marec B; Munnich A; David V; Vekemans M
    Hum Mol Genet; 1999 Sep; 8(9):1683-9. PubMed ID: 10441331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mutational spectrum of the sonic hedgehog gene in holoprosencephaly: SHH mutations cause a significant proportion of autosomal dominant holoprosencephaly.
    Nanni L; Ming JE; Bocian M; Steinhaus K; Bianchi DW; Die-Smulders C; Giannotti A; Imaizumi K; Jones KL; Campo MD; Martin RA; Meinecke P; Pierpont ME; Robin NH; Young ID; Roessler E; Muenke M
    Hum Mol Genet; 1999 Dec; 8(13):2479-88. PubMed ID: 10556296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.