BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29749696)

  • 1. Electron acceptor availability alters carbon and energy metabolism in a thermoacidophile.
    Amenabar MJ; Colman DR; Poudel S; Roden EE; Boyd ES
    Environ Microbiol; 2018 Jul; 20(7):2523-2537. PubMed ID: 29749696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of Mineral Substrate Acquisition in a Thermoacidophile.
    Amenabar MJ; Boyd ES
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mode of carbon and energy metabolism shifts lipid composition in the thermoacidophile
    Rhim JH; Zhou A; Amenabar MJ; Boyer GM; Elling FJ; Weber Y; Pearson A; Boyd ES; Leavitt WD
    Appl Environ Microbiol; 2024 Feb; 90(2):e0136923. PubMed ID: 38236067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acidianus manzaensis sp. nov., a novel thermoacidophilic archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+.
    Yoshida N; Nakasato M; Ohmura N; Ando A; Saiki H; Ishii M; Igarashi Y
    Curr Microbiol; 2006 Nov; 53(5):406-11. PubMed ID: 17066338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial substrate preference dictated by energy demand, not supply.
    Amenabar MJ; Shock EL; Roden EE; Peters JW; Boyd ES
    Nat Geosci; 2017 Aug; 10(8):577-581. PubMed ID: 30944580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation.
    Yang TH; Coppi MV; Lovley DR; Sun J
    Microb Cell Fact; 2010 Nov; 9():90. PubMed ID: 21092215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Citric acid cycle in the hyperthermophilic archaeon Pyrobaculum islandicum grown autotrophically, heterotrophically, and mixotrophically with acetate.
    Hu Y; Holden JF
    J Bacteriol; 2006 Jun; 188(12):4350-5. PubMed ID: 16740941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing acetone production from H
    Takemura K; Kato J; Kato S; Fujii T; Wada K; Iwasaki Y; Aoi Y; Matsushika A; Morita T; Murakami K; Nakashimada Y
    J Biosci Bioeng; 2023 Jul; 136(1):13-19. PubMed ID: 37100649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of uptake hydrogenase and hydrogen oxidation during heterotrophic growth of Bradyrhizobium japonicum.
    van Berkum P
    J Bacteriol; 1987 Oct; 169(10):4565-9. PubMed ID: 3115959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterotrophic sulfur reduction by Thermotoga sp. strain FjSS3.B1.
    Janssen PH; Morgan HW
    FEMS Microbiol Lett; 1992 Sep; 75(2-3):213-7. PubMed ID: 1398039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD.
    Sorokin DY; Kuenen JG; Jetten MS
    Arch Microbiol; 2001 Feb; 175(2):94-101. PubMed ID: 11285746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Native metals, electron bifurcation, and CO
    Sousa FL; Preiner M; Martin WF
    Curr Opin Microbiol; 2018 Jun; 43():77-83. PubMed ID: 29316496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fe(III) and S0 reduction by Pelobacter carbinolicus.
    Lovley DR; Phillips EJ; Lonergan DJ; Widman PK
    Appl Environ Microbiol; 1995 Jun; 61(6):2132-8. PubMed ID: 7793935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into Carbon Metabolism Provided by Fluorescence
    Tominski C; Lösekann-Behrens T; Ruecker A; Hagemann N; Kleindienst S; Mueller CW; Höschen C; Kögel-Knabner I; Kappler A; Behrens S
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29500258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome analysis of the thermoacidophilic archaeon Acidianus copahuensis focusing on the metabolisms associated to biomining activities.
    Urbieta MS; Rascovan N; Vázquez MP; Donati E
    BMC Genomics; 2017 Jun; 18(1):445. PubMed ID: 28587624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The bioenergetics of methanogenesis.
    Daniels L; Sparling R; Sprott GD
    Biochim Biophys Acta; 1984 Sep; 768(2):113-63. PubMed ID: 6236847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic biooxidation of Fe(II) by Dechlorosoma suillum.
    Lack JG; Chaudhuri SK; Chakraborty R; Achenbach LA; Coates JD
    Microb Ecol; 2002 May; 43(4):424-31. PubMed ID: 11953812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autotrophic induced heterotrophic bioreduction of bromate in use of elemental sulfur or zerovalent iron as electron donor.
    Liu C; Li W; Liu L; Yu H; Liu F; Lee DJ
    Bioresour Technol; 2020 Dec; 317():124015. PubMed ID: 32827978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression of extracellular thiol groups of moderately thermophilic Sulfobacillus thermosulfidooxidans and extremely thermophilic Acidianus manzaensis grown on S(0) and Fe (2.).
    Liu HC; Xia JL; Nie ZY; Zhen XJ; Zhang LJ
    Arch Microbiol; 2015 Aug; 197(6):823-31. PubMed ID: 25983134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autotrophic antimonate bio-reduction using hydrogen as the electron donor.
    Lai CY; Wen LL; Zhang Y; Luo SS; Wang QY; Luo YH; Chen R; Yang X; Rittmann BE; Zhao HP
    Water Res; 2016 Jan; 88():467-474. PubMed ID: 26519630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.