These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29749802)

  • 1. The estimation method of friction in unconfined compression tests of liver tissue.
    Yang J; Yu L; Wang L; Wang W; Cui J
    Proc Inst Mech Eng H; 2018 Jun; 232(6):573-587. PubMed ID: 29749802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elimination of the friction effects in unconfined compression tests of biomaterials and soft tissues.
    Wu JZ; Dong RG; Smutz WP
    Proc Inst Mech Eng H; 2004; 218(1):35-40. PubMed ID: 14982344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of friction coefficient in unconfined compression of brain tissue.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2012 Oct; 14():163-71. PubMed ID: 23026694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of effects of friction on the deformation behavior of soft tissues in unconfined compression tests.
    Wu JZ; Dong RG; Schopper AW
    J Biomech; 2004 Jan; 37(1):147-55. PubMed ID: 14672579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On a staggered iFEM approach to account for friction in compression testing of soft materials.
    Böl M; Kruse R; Ehret AE
    J Mech Behav Biomed Mater; 2013 Nov; 27():204-13. PubMed ID: 23689028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nonlinear material properties of liver tissue determined from no-slip uniaxial compression experiments.
    Roan E; Vemaganti K
    J Biomech Eng; 2007 Jun; 129(3):450-6. PubMed ID: 17536913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical characterization of brain tissue in compression at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2012 Jun; 10():23-38. PubMed ID: 22520416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of strain rate on the material properties of human liver parenchyma in unconfined compression.
    Kemper AR; Santago AC; Stitzel JD; Sparks JL; Duma SM
    J Biomech Eng; 2013 Oct; 135(10):104503-8. PubMed ID: 23775282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of friction on the unconfined compressive response of articular cartilage: a finite element analysis.
    Spilker RL; Suh JK; Mow VC
    J Biomech Eng; 1990 May; 112(2):138-46. PubMed ID: 2345443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transverse Compression of Tendons.
    Salisbury ST; Buckley CP; Zavatsky AB
    J Biomech Eng; 2016 Apr; 138(4):041002. PubMed ID: 26833218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical characterization of porcine liver properties for computational simulation of indentation on cancerous tissue.
    Yang Y; Li K; Sommer G; Yung KL; Holzapfel GA
    Math Med Biol; 2020 Dec; 37(4):469-490. PubMed ID: 32424396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the biomechanical and injury response of human liver parenchyma under tensile loading.
    Untaroiu CD; Lu YC; Siripurapu SK; Kemper AR
    J Mech Behav Biomed Mater; 2015 Jan; 41():280-91. PubMed ID: 25092147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications.
    Karimi A; Navidbakhsh M
    Biomed Tech (Berl); 2014 Dec; 59(6):479-86. PubMed ID: 24988278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method of testing very soft biological tissues in compression.
    Miller K
    J Biomech; 2005 Jan; 38(1):153-8. PubMed ID: 15519351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the coefficient of friction and tightening speed on the preload induced at the dental implant complex with the finite element method.
    Bulaqi HA; Mousavi Mashhadi M; Geramipanah F; Safari H; Paknejad M
    J Prosthet Dent; 2015 May; 113(5):405-11. PubMed ID: 25749081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization method for the determination of Mooney-Rivlin material coefficients of the human breasts in-vivo using static and dynamic finite element models.
    Sun Y; Chen L; Yick KL; Yu W; Lau N; Jiao W
    J Mech Behav Biomed Mater; 2019 Feb; 90():615-625. PubMed ID: 30500699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperelastic mechanical behavior of chitosan hydrogels for nucleus pulposus replacement-experimental testing and constitutive modeling.
    Sasson A; Patchornik S; Eliasy R; Robinson D; Haj-Ali R
    J Mech Behav Biomed Mater; 2012 Apr; 8():143-53. PubMed ID: 22402161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of coefficient of friction for self-expanding stent-grafts.
    Vad S; Eskinazi A; Corbett T; McGloughlin T; Vande Geest JP
    J Biomech Eng; 2010 Dec; 132(12):121007. PubMed ID: 21142321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress-relaxation response of human menisci under confined compression conditions.
    Martin Seitz A; Galbusera F; Krais C; Ignatius A; Dürselen L
    J Mech Behav Biomed Mater; 2013 Oct; 26():68-80. PubMed ID: 23811278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-linear model for compression tests on articular cartilage.
    Grillo A; Guaily A; Giverso C; Federico S
    J Biomech Eng; 2015 Jul; 137(7):. PubMed ID: 25840005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.