These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29749957)

  • 1. Tunable optical and excitonic properties of phosphorene via oxidation.
    Sadki S; Drissi LB
    J Phys Condens Matter; 2018 Jun; 30(25):255703. PubMed ID: 29749957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signature of excitonic insulators in phosphorene nanoribbons.
    Felipe Pereira de Oliveira A; Luisa da Rosa A; Cavalheiro Dias A
    J Phys Condens Matter; 2024 May; 36(34):. PubMed ID: 38744299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic and optical properties of the buckled and puckered phases of phosphorene and arsenene.
    Galicia Hernandez JM; Fernandez-Escamilla HN; Guerrero Sanchez J; Takeuchi N
    Sci Rep; 2022 Dec; 12(1):20979. PubMed ID: 36470955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical absorption and excitation spectra of monolayer blue phosphorene.
    Nguyen-Truong HT
    J Phys Condens Matter; 2020 Feb; 32(9):095702. PubMed ID: 31698345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superbound Excitons in 2D Phosphorene Oxides.
    Lu Y; Zhu X
    J Phys Chem A; 2019 Jan; 123(1):21-25. PubMed ID: 30521340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unveiling excitons in two-dimensional
    Guassi MR; Besse R; Piotrowski MJ; C Rêgo CR; Guedes-Sobrinho D; da Rosa AL; Cavalheiro Dias A
    Sci Rep; 2024 May; 14(1):11710. PubMed ID: 38778075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain-tunable electronic and optical properties of novel anisotropic green phosphorene: a first-principles study.
    Chen QY; Liu MY; Cao C; He Y
    Nanotechnology; 2019 Aug; 30(33):335710. PubMed ID: 31035273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Many-body effects and excitonic features in 2D biphenylene carbon.
    Lüder J; Puglia C; Ottosson H; Eriksson O; Sanyal B; Brena B
    J Chem Phys; 2016 Jan; 144(2):024702. PubMed ID: 26772582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitonic absorption spectra in graphene nanoflakes: Tuning of exciton binding energy by dielectric environments.
    Wang H; Sheng W
    J Chem Phys; 2017 Feb; 146(8):084705. PubMed ID: 28249450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio calculation of optical spectra of liquids: many-body effects in the electronic excitations of water.
    Garbuio V; Cascella M; Reining L; Sole RD; Pulci O
    Phys Rev Lett; 2006 Sep; 97(13):137402. PubMed ID: 17026073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-principles study on the electronic and optical properties of AlSb monolayer.
    Mohebpour MA; Tagani MB
    Sci Rep; 2023 Jun; 13(1):9925. PubMed ID: 37337049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling of energy gaps in phosphorene nanoflakes.
    Huang L; Zhong J; Sheng W; Zhou A
    J Phys Condens Matter; 2021 Dec; 34(8):. PubMed ID: 34814118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical properties of orthorhombic germanium sulfide: unveiling the anisotropic nature of Wannier excitons.
    Arfaoui M; Zawadzka N; Ayari S; Chen Z; Watanabe K; Taniguchi T; Babiński A; Koperski M; Jaziri S; Molas MR
    Nanoscale; 2023 Nov; 15(42):17014-17028. PubMed ID: 37843442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Enhanced Many-Body Interactions in Anisotropic 2D Semiconductors.
    Sharma A; Yan H; Zhang L; Sun X; Liu B; Lu Y
    Acc Chem Res; 2018 May; 51(5):1164-1173. PubMed ID: 29671579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The excitonic effects in single and double-walled boron nitride nanotubes.
    Wang S; Li Y; Yip J; Wang J
    J Chem Phys; 2014 Jun; 140(24):244701. PubMed ID: 24985662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The electronic and optical properties of the sulvanite compounds: a many-body perturbation and time-dependent density functional theory study.
    Espinosa-García WF; Pérez-Walton S; Osorio-Guillén JM; Moyses Araujo C
    J Phys Condens Matter; 2018 Jan; 30(3):035502. PubMed ID: 29182517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitons and optical properties of alpha-quartz.
    Chang EK; Rohlfing M; Louie SG
    Phys Rev Lett; 2000 Sep; 85(12):2613-6. PubMed ID: 10978120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable relativistic quasiparticle electronic and excitonic behavior of the FAPb(I
    Muhammad Z; Liu P; Ahmad R; Jalali Asadabadi S; Franchini C; Ahmad I
    Phys Chem Chem Phys; 2020 Jun; 22(21):11943-11955. PubMed ID: 32412023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical spectrum of MoS2: many-body effects and diversity of exciton states.
    Qiu DY; da Jornada FH; Louie SG
    Phys Rev Lett; 2013 Nov; 111(21):216805. PubMed ID: 24313514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarization-dependent excitons and plasmon activity in nodal-line semimetal ZrSiS.
    Meléndez JJ; Cantarero A
    Phys Chem Chem Phys; 2022 Jan; 24(3):1860-1868. PubMed ID: 34989375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.