BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 29750034)

  • 1. Physiologically based pharmacokinetic modeling of nanoceria systemic distribution in rats suggests dose- and route-dependent biokinetics.
    Carlander U; Moto TP; Desalegn AA; Yokel RA; Johanson G
    Int J Nanomedicine; 2018; 13():2631-2646. PubMed ID: 29750034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity and tissue distribution of cerium oxide nanoparticles in rats by two different routes: single intravenous injection and single oral administration.
    Park K; Park J; Lee H; Choi J; Yu WJ; Lee J
    Arch Pharm Res; 2018 Nov; 41(11):1108-1116. PubMed ID: 30178439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo biodistribution and physiologically based pharmacokinetic modeling of inhaled fresh and aged cerium oxide nanoparticles in rats.
    Li D; Morishita M; Wagner JG; Fatouraie M; Wooldridge M; Eagle WE; Barres J; Carlander U; Emond C; Jolliet O
    Part Fibre Toxicol; 2016 Aug; 13(1):45. PubMed ID: 27542346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulmonary distribution of nanoceria: comparison of intratracheal, microspray instillation and dry powder insufflation.
    Molina RM; Konduru NV; Hirano H; Donaghey TC; Adamo B; Laurenzi B; Pyrgiotakis G; Brain JD
    Inhal Toxicol; 2016 Oct; 28(12):550-560. PubMed ID: 27618878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a multi-route physiologically based pharmacokinetic (PBPK) model for nanomaterials: a comparison between a traditional versus a new route-specific approach using gold nanoparticles in rats.
    Chou WC; Cheng YH; Riviere JE; Monteiro-Riviere NA; Kreyling WG; Lin Z
    Part Fibre Toxicol; 2022 Jul; 19(1):47. PubMed ID: 35804418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodistribution and biopersistence of ceria engineered nanomaterials: size dependence.
    Yokel RA; Tseng MT; Dan M; Unrine JM; Graham UM; Wu P; Grulke EA
    Nanomedicine; 2013 Apr; 9(3):398-407. PubMed ID: 22960425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution, elimination, and biopersistence to 90 days of a systemically introduced 30 nm ceria-engineered nanomaterial in rats.
    Yokel RA; Au TC; MacPhail R; Hardas SS; Butterfield DA; Sultana R; Goodman M; Tseng MT; Dan M; Haghnazar H; Unrine JM; Graham UM; Wu P; Grulke EA
    Toxicol Sci; 2012 May; 127(1):256-68. PubMed ID: 22367688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ophthalmic Applications of Cerium Oxide Nanoparticles.
    Maccarone R; Tisi A; Passacantando M; Ciancaglini M
    J Ocul Pharmacol Ther; 2020; 36(6):376-383. PubMed ID: 31891528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles.
    Carlander U; Li D; Jolliet O; Emond C; Johanson G
    Int J Nanomedicine; 2016; 11():625-40. PubMed ID: 26929620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male Sprague-Dawley rats.
    Nalabotu SK; Kolli MB; Triest WE; Ma JY; Manne ND; Katta A; Addagarla HS; Rice KM; Blough ER
    Int J Nanomedicine; 2011; 6():2327-35. PubMed ID: 22072870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice.
    Hirst SM; Karakoti A; Singh S; Self W; Tyler R; Seal S; Reilly CM
    Environ Toxicol; 2013 Feb; 28(2):107-18. PubMed ID: 21618676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria.
    Tseng MT; Lu X; Duan X; Hardas SS; Sultana R; Wu P; Unrine JM; Graham U; Butterfield DA; Grulke EA; Yokel RA
    Toxicol Appl Pharmacol; 2012 Apr; 260(2):173-82. PubMed ID: 22373796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organ burden of inhaled nanoceria in a 2-year low-dose exposure study: dump or depot?
    Tentschert J; Laux P; Jungnickel H; Brunner J; Estrela-Lopis I; Merker C; Meijer J; Ernst H; Ma-Hock L; Keller J; Landsiedel R; Luch A
    Nanotoxicology; 2020 May; 14(4):554-576. PubMed ID: 32216600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotoxicity analysis of cerium oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral administration.
    Kumari M; Kumari SI; Grover P
    Mutagenesis; 2014 Nov; 29(6):467-79. PubMed ID: 25209125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotoxicity assessment of cerium oxide nanoparticles in female Wistar rats after acute oral exposure.
    Kumari M; Kumari SI; Kamal SS; Grover P
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Dec; 775-776():7-19. PubMed ID: 25435351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity of Two Different Size Ceria Nanoparticles to Mice After Repeated Intranasal Instillation.
    Wu J; Ma Y; Ding Y; Zhang P; He X; Zhang Z
    J Nanosci Nanotechnol; 2019 May; 19(5):2474-2482. PubMed ID: 30501742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistent hepatic structural alterations following nanoceria vascular infusion in the rat.
    Tseng MT; Fu Q; Lor K; Fernandez-Botran GR; Deng ZB; Graham U; Butterfield DA; Grulke EA; Yokel RA
    Toxicol Pathol; 2014 Aug; 42(6):984-96. PubMed ID: 24178579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental Effects of Nanoceria on Seed Production of Common Bean (Phaseolus vulgaris): A Proteomic Analysis.
    Majumdar S; Almeida IC; Arigi EA; Choi H; VerBerkmoes NC; Trujillo-Reyes J; Flores-Margez JP; White JC; Peralta-Videa JR; Gardea-Torresdey JL
    Environ Sci Technol; 2015 Nov; 49(22):13283-93. PubMed ID: 26488752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoceria distribution and effects are mouse-strain dependent.
    Yokel RA; Tseng MT; Butterfield DA; Hancock ML; Grulke EA; Unrine JM; Stromberg AJ; Dozier AK; Graham UM
    Nanotoxicology; 2020 Aug; 14(6):827-846. PubMed ID: 32552239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ceria nanoparticles stabilized by organic surface coatings activate the lysosome-autophagy system and enhance autophagic clearance.
    Song W; Soo Lee S; Savini M; Popp L; Colvin VL; Segatori L
    ACS Nano; 2014 Oct; 8(10):10328-42. PubMed ID: 25315655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.