These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 29750034)

  • 1. Physiologically based pharmacokinetic modeling of nanoceria systemic distribution in rats suggests dose- and route-dependent biokinetics.
    Carlander U; Moto TP; Desalegn AA; Yokel RA; Johanson G
    Int J Nanomedicine; 2018; 13():2631-2646. PubMed ID: 29750034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity and tissue distribution of cerium oxide nanoparticles in rats by two different routes: single intravenous injection and single oral administration.
    Park K; Park J; Lee H; Choi J; Yu WJ; Lee J
    Arch Pharm Res; 2018 Nov; 41(11):1108-1116. PubMed ID: 30178439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo biodistribution and physiologically based pharmacokinetic modeling of inhaled fresh and aged cerium oxide nanoparticles in rats.
    Li D; Morishita M; Wagner JG; Fatouraie M; Wooldridge M; Eagle WE; Barres J; Carlander U; Emond C; Jolliet O
    Part Fibre Toxicol; 2016 Aug; 13(1):45. PubMed ID: 27542346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulmonary distribution of nanoceria: comparison of intratracheal, microspray instillation and dry powder insufflation.
    Molina RM; Konduru NV; Hirano H; Donaghey TC; Adamo B; Laurenzi B; Pyrgiotakis G; Brain JD
    Inhal Toxicol; 2016 Oct; 28(12):550-560. PubMed ID: 27618878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a multi-route physiologically based pharmacokinetic (PBPK) model for nanomaterials: a comparison between a traditional versus a new route-specific approach using gold nanoparticles in rats.
    Chou WC; Cheng YH; Riviere JE; Monteiro-Riviere NA; Kreyling WG; Lin Z
    Part Fibre Toxicol; 2022 Jul; 19(1):47. PubMed ID: 35804418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodistribution and biopersistence of ceria engineered nanomaterials: size dependence.
    Yokel RA; Tseng MT; Dan M; Unrine JM; Graham UM; Wu P; Grulke EA
    Nanomedicine; 2013 Apr; 9(3):398-407. PubMed ID: 22960425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution, elimination, and biopersistence to 90 days of a systemically introduced 30 nm ceria-engineered nanomaterial in rats.
    Yokel RA; Au TC; MacPhail R; Hardas SS; Butterfield DA; Sultana R; Goodman M; Tseng MT; Dan M; Haghnazar H; Unrine JM; Graham UM; Wu P; Grulke EA
    Toxicol Sci; 2012 May; 127(1):256-68. PubMed ID: 22367688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ophthalmic Applications of Cerium Oxide Nanoparticles.
    Maccarone R; Tisi A; Passacantando M; Ciancaglini M
    J Ocul Pharmacol Ther; 2020; 36(6):376-383. PubMed ID: 31891528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles.
    Carlander U; Li D; Jolliet O; Emond C; Johanson G
    Int J Nanomedicine; 2016; 11():625-40. PubMed ID: 26929620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male Sprague-Dawley rats.
    Nalabotu SK; Kolli MB; Triest WE; Ma JY; Manne ND; Katta A; Addagarla HS; Rice KM; Blough ER
    Int J Nanomedicine; 2011; 6():2327-35. PubMed ID: 22072870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice.
    Hirst SM; Karakoti A; Singh S; Self W; Tyler R; Seal S; Reilly CM
    Environ Toxicol; 2013 Feb; 28(2):107-18. PubMed ID: 21618676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria.
    Tseng MT; Lu X; Duan X; Hardas SS; Sultana R; Wu P; Unrine JM; Graham U; Butterfield DA; Grulke EA; Yokel RA
    Toxicol Appl Pharmacol; 2012 Apr; 260(2):173-82. PubMed ID: 22373796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organ burden of inhaled nanoceria in a 2-year low-dose exposure study: dump or depot?
    Tentschert J; Laux P; Jungnickel H; Brunner J; Estrela-Lopis I; Merker C; Meijer J; Ernst H; Ma-Hock L; Keller J; Landsiedel R; Luch A
    Nanotoxicology; 2020 May; 14(4):554-576. PubMed ID: 32216600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotoxicity analysis of cerium oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral administration.
    Kumari M; Kumari SI; Grover P
    Mutagenesis; 2014 Nov; 29(6):467-79. PubMed ID: 25209125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotoxicity assessment of cerium oxide nanoparticles in female Wistar rats after acute oral exposure.
    Kumari M; Kumari SI; Kamal SS; Grover P
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Dec; 775-776():7-19. PubMed ID: 25435351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity of Two Different Size Ceria Nanoparticles to Mice After Repeated Intranasal Instillation.
    Wu J; Ma Y; Ding Y; Zhang P; He X; Zhang Z
    J Nanosci Nanotechnol; 2019 May; 19(5):2474-2482. PubMed ID: 30501742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistent hepatic structural alterations following nanoceria vascular infusion in the rat.
    Tseng MT; Fu Q; Lor K; Fernandez-Botran GR; Deng ZB; Graham U; Butterfield DA; Grulke EA; Yokel RA
    Toxicol Pathol; 2014 Aug; 42(6):984-96. PubMed ID: 24178579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental Effects of Nanoceria on Seed Production of Common Bean (Phaseolus vulgaris): A Proteomic Analysis.
    Majumdar S; Almeida IC; Arigi EA; Choi H; VerBerkmoes NC; Trujillo-Reyes J; Flores-Margez JP; White JC; Peralta-Videa JR; Gardea-Torresdey JL
    Environ Sci Technol; 2015 Nov; 49(22):13283-93. PubMed ID: 26488752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoceria distribution and effects are mouse-strain dependent.
    Yokel RA; Tseng MT; Butterfield DA; Hancock ML; Grulke EA; Unrine JM; Stromberg AJ; Dozier AK; Graham UM
    Nanotoxicology; 2020 Aug; 14(6):827-846. PubMed ID: 32552239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ceria nanoparticles stabilized by organic surface coatings activate the lysosome-autophagy system and enhance autophagic clearance.
    Song W; Soo Lee S; Savini M; Popp L; Colvin VL; Segatori L
    ACS Nano; 2014 Oct; 8(10):10328-42. PubMed ID: 25315655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.