These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 29750267)

  • 1. Base modifications affecting RNA polymerase and reverse transcriptase fidelity.
    Potapov V; Fu X; Dai N; Corrêa IR; Tanner NA; Ong JL
    Nucleic Acids Res; 2018 Jun; 46(11):5753-5763. PubMed ID: 29750267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unequal human immunodeficiency virus type 1 reverse transcriptase error rates with RNA and DNA templates.
    Boyer JC; Bebenek K; Kunkel TA
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):6919-23. PubMed ID: 1379727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A C-nucleotide base pair: methylpseudouridine-directed incorporation of formycin triphosphate into RNA catalyzed by T7 RNA polymerase.
    Piccirilli JA; Moroney SE; Benner SA
    Biochemistry; 1991 Oct; 30(42):10350-6. PubMed ID: 1718418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription.
    Vilfan ID; Tsai YC; Clark TA; Wegener J; Dai Q; Yi C; Pan T; Turner SW; Korlach J
    J Nanobiotechnology; 2013 Apr; 11():8. PubMed ID: 23552456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-yield synthesis of RNA using T7 RNA polymerase and plasmid DNA or oligonucleotide templates.
    Nilsen TW; Rio DC; Ares M
    Cold Spring Harb Protoc; 2013 Nov; 2013(11):. PubMed ID: 24184762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered minor-groove hydrogen bonds in DNA block transcription elongation by T7 RNA polymerase.
    Tanasova M; Goeldi S; Meyer F; Hanawalt PC; Spivak G; Sturla SJ
    Chembiochem; 2015 May; 16(8):1212-8. PubMed ID: 25881991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical characterization of enzyme fidelity of influenza A virus RNA polymerase complex.
    Aggarwal S; Bradel-Tretheway B; Takimoto T; Dewhurst S; Kim B
    PLoS One; 2010 Apr; 5(4):e10372. PubMed ID: 20454455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-hydrogen-bonded base pairs for specific transcription.
    Hirao I; Mitsui T; Kimoto M; Kawai R; Sato A; Yokoyama S
    Nucleic Acids Symp Ser (Oxf); 2005; (49):33-4. PubMed ID: 17150619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Y639F/H784A T7 RNA polymerase double mutant displays superior properties for synthesizing RNAs with non-canonical NTPs.
    Padilla R; Sousa R
    Nucleic Acids Res; 2002 Dec; 30(24):e138. PubMed ID: 12490729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient unnatural base pair for a base-pair-expanded transcription system.
    Mitsui T; Kimoto M; Harada Y; Yokoyama S; Hirao I
    J Am Chem Soc; 2005 Jun; 127(24):8652-8. PubMed ID: 15954770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified nucleic acids for in vitro selection.
    Ito Y
    Nucleic Acids Symp Ser; 1997; (37):259-60. PubMed ID: 9586098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of neighboring bases on miscoding properties of N2,3-ethenoguanine.
    Mroczkowska MM; Kuśmierek JT
    Z Naturforsch C J Biosci; 1993; 48(1-2):63-7. PubMed ID: 7682416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide.
    Ong JL; Loakes D; Jaroslawski S; Too K; Holliger P
    J Mol Biol; 2006 Aug; 361(3):537-50. PubMed ID: 16859707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fidelity of human immunodeficiency virus type I reverse transcriptase in copying natural RNA.
    Hübner A; Kruhoffer M; Grosse F; Krauss G
    J Mol Biol; 1992 Feb; 223(3):595-600. PubMed ID: 1371812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription, reverse transcription, and analysis of RNA containing artificial genetic components.
    Leal NA; Kim HJ; Hoshika S; Kim MJ; Carrigan MA; Benner SA
    ACS Synth Biol; 2015 Apr; 4(4):407-13. PubMed ID: 25137127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanding the structural and functional diversity of RNA: analog uridine triphosphates as candidates for in vitro selection of nucleic acids.
    Vaish NK; Fraley AW; Szostak JW; McLaughlin LW
    Nucleic Acids Res; 2000 Sep; 28(17):3316-22. PubMed ID: 10954600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fidelity of nucleic acid amplification with avian myeloblastosis virus reverse transcriptase and T7 RNA polymerase.
    Sooknanan R; Howes M; Read L; Malek LT
    Biotechniques; 1994 Dec; 17(6):1077-80, 1083-5. PubMed ID: 7532977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Choosing the right sugar: how polymerases select a nucleotide substrate.
    Joyce CM
    Proc Natl Acad Sci U S A; 1997 Mar; 94(5):1619-22. PubMed ID: 9050827
    [No Abstract]   [Full Text] [Related]  

  • 19. A possible role for cysteine residues in the fidelity of DNA synthesis exhibited by the reverse transcriptases of human immunodeficiency viruses type 1 and type 2.
    Bakhanashvili M; Hizi A
    FEBS Lett; 1992 Jun; 304(2-3):289-93. PubMed ID: 1377646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent studies of T7 RNA polymerase mechanism.
    Kochetkov SN; Rusakova EE; Tunitskaya VL
    FEBS Lett; 1998 Dec; 440(3):264-7. PubMed ID: 9872383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.