These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 29750501)

  • 1. Synthetic Toolkit for Complex Genetic Circuit Engineering in Saccharomyces cerevisiae.
    Rantasalo A; Kuivanen J; Penttilä M; Jäntti J; Mojzita D
    ACS Synth Biol; 2018 Jun; 7(6):1573-1587. PubMed ID: 29750501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of hybrid regulated mother-specific yeast promoters for inducible differential gene expression.
    Pothoulakis G; Ellis T
    PLoS One; 2018; 13(3):e0194588. PubMed ID: 29566038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoupling transcription factor expression and activity enables dimmer switch gene regulation.
    Ricci-Tam C; Ben-Zion I; Wang J; Palme J; Li A; Savir Y; Springer M
    Science; 2021 Apr; 372(6539):292-295. PubMed ID: 33859035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering transcription factor-based biosensors for repressive regulation through transcriptional deactivation design in Saccharomyces cerevisiae.
    Qiu C; Chen X; Rexida R; Shen Y; Qi Q; Bao X; Hou J
    Microb Cell Fact; 2020 Jul; 19(1):146. PubMed ID: 32690010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Orthogonal Permease-Inducer-Repressor Feedback Loop Shows Bistability.
    Gnügge R; Dharmarajan L; Lang M; Stelling J
    ACS Synth Biol; 2016 Oct; 5(10):1098-1107. PubMed ID: 27148753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae.
    Wang M; Li S; Zhao H
    Biotechnol Bioeng; 2016 Jan; 113(1):206-15. PubMed ID: 26059511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae.
    Kim S; Lee K; Bae SJ; Hahn JS
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2705-14. PubMed ID: 25573467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinated transcription factor and promoter engineering to establish strong expression elements in Saccharomyces cerevisiae.
    Leavitt JM; Tong A; Tong J; Pattie J; Alper HS
    Biotechnol J; 2016 Jul; 11(7):866-76. PubMed ID: 27152757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and characterization of AND-gate dynamic controllers with a modular synthetic GAL1 core promoter in Saccharomyces cerevisiae.
    Teo WS; Chang MW
    Biotechnol Bioeng; 2014 Jan; 111(1):144-51. PubMed ID: 23860786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GAL promoter-driven heterologous gene expression in Saccharomyces cerevisiae Δ strain at anaerobic alcoholic fermentation.
    Ahn J; Park KM; Lee H; Son YJ; Choi ES
    FEMS Yeast Res; 2013 Feb; 13(1):140-2. PubMed ID: 23131005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation by tetracycline of gene expression in Saccharomyces cerevisiae.
    Nagahashi S; Nakayama H; Hamada K; Yang H; Arisawa M; Kitada K
    Mol Gen Genet; 1997 Jul; 255(4):372-5. PubMed ID: 9267432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Highly Characterized Yeast Toolkit for Modular, Multipart Assembly.
    Lee ME; DeLoache WC; Cervantes B; Dueber JE
    ACS Synth Biol; 2015 Sep; 4(9):975-86. PubMed ID: 25871405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae.
    Vanegas KG; Lehka BJ; Mortensen UH
    Microb Cell Fact; 2017 Feb; 16(1):25. PubMed ID: 28179021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae.
    Da Silva NA; Srikrishnan S
    FEMS Yeast Res; 2012 Mar; 12(2):197-214. PubMed ID: 22129153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A universal gene expression system for fungi.
    Rantasalo A; Landowski CP; Kuivanen J; Korppoo A; Reuter L; Koivistoinen O; Valkonen M; Penttilä M; Jäntti J; Mojzita D
    Nucleic Acids Res; 2018 Oct; 46(18):e111. PubMed ID: 29924368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing synthetic hybrid promoters to increase constitutive or diauxic shift-induced expression in Saccharomyces cerevisiae.
    Wang J; Zhai H; Rexida R; Shen Y; Hou J; Bao X
    FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30203049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered Reversal of Function in Glycolytic Yeast Promoters.
    Rajkumar AS; Özdemir E; Lis AV; Schneider K; Qin J; Jensen MK; Keasling JD
    ACS Synth Biol; 2019 Jun; 8(6):1462-1468. PubMed ID: 31051075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and characterization of a vector set with regulated promoters for systematic metabolic engineering in Saccharomyces cerevisiae.
    Shen MW; Fang F; Sandmeyer S; Da Silva NA
    Yeast; 2012 Dec; 29(12):495-503. PubMed ID: 23166051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.