BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 29750507)

  • 1. Directed Atom-by-Atom Assembly of Dopants in Silicon.
    Hudak BM; Song J; Sims H; Troparevsky MC; Humble TS; Pantelides ST; Snijders PC; Lupini AR
    ACS Nano; 2018 Jun; 12(6):5873-5879. PubMed ID: 29750507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depth-dependent imaging of individual dopant atoms in silicon.
    Voyles PM; Muller DA; Kirkland EJ
    Microsc Microanal; 2004 Apr; 10(2):291-300. PubMed ID: 15306055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Building Structures Atom by Atom via Electron Beam Manipulation.
    Dyck O; Kim S; Jimenez-Izal E; Alexandrova AN; Kalinin SV; Jesse S
    Small; 2018 Sep; 14(38):e1801771. PubMed ID: 30146718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single-atom transistor.
    Fuechsle M; Miwa JA; Mahapatra S; Ryu H; Lee S; Warschkow O; Hollenberg LC; Klimeck G; Simmons MY
    Nat Nanotechnol; 2012 Feb; 7(4):242-6. PubMed ID: 22343383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si.
    Voyles PM; Muller DA; Grazul JL; Citrin PH; Gossmann HJ
    Nature; 2002 Apr; 416(6883):826-9. PubMed ID: 11976677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of Electron-Beam Manipulation of Single-Dopant Atoms in Silicon.
    Markevich A; Hudak BM; Madsen J; Song J; Snijders PC; Lupini AR; Susi T
    J Phys Chem C Nanomater Interfaces; 2021 Jul; 125(29):16041-16048. PubMed ID: 34354792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron-Beam Manipulation of Silicon Dopants in Graphene.
    Tripathi M; Mittelberger A; Pike NA; Mangler C; Meyer JC; Verstraete MJ; Kotakoski J; Susi T
    Nano Lett; 2018 Aug; 18(8):5319-5323. PubMed ID: 29945442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic-scale imaging of individual dopant atoms in a buried interface.
    Shibata N; Findlay SD; Azuma S; Mizoguchi T; Yamamoto T; Ikuhara Y
    Nat Mater; 2009 Aug; 8(8):654-8. PubMed ID: 19543277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variable voltage electron microscopy: Toward atom-by-atom fabrication in 2D materials.
    Dyck O; Jesse S; Delby N; Kalinin SV; Lupini AR
    Ultramicroscopy; 2020 Apr; 211():112949. PubMed ID: 32044709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Atom Control of Arsenic Incorporation in Silicon for High-Yield Artificial Lattice Fabrication.
    Stock TJZ; Warschkow O; Constantinou PC; Bowler DR; Schofield SR; Curson NJ
    Adv Mater; 2024 Jun; 36(24):e2312282. PubMed ID: 38380859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limits in detecting an individual dopant atom embedded in a crystal.
    Mittal A; Mkhoyan KA
    Ultramicroscopy; 2011 Jul; 111(8):1101-10. PubMed ID: 21741341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-electron tunneling through an individual arsenic dopant in silicon.
    Shorokhov VV; Presnov DE; Amitonov SV; Pashkin YA; Krupenin VA
    Nanoscale; 2017 Jan; 9(2):613-620. PubMed ID: 27942691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atom devices based on single dopants in silicon nanostructures.
    Moraru D; Udhiarto A; Anwar M; Nowak R; Jablonski R; Hamid E; Tarido JC; Mizuno T; Tabe M
    Nanoscale Res Lett; 2011 Jul; 6(1):479. PubMed ID: 21801408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopant Distribution in Atomic Layer Deposited ZnO:Al Films Visualized by Transmission Electron Microscopy and Atom Probe Tomography.
    Wu Y; Giddings AD; Verheijen MA; Macco B; Prosa TJ; Larson DJ; Roozeboom F; Kessels WMM
    Chem Mater; 2018 Feb; 30(4):1209-1217. PubMed ID: 29515290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct imaging of heteroatom dopants in catalytic carbon nano-onions.
    Thomas MP; Wanninayake N; De Alwis Goonatilleke M; Kim DY; Guiton BS
    Nanoscale; 2020 Mar; 12(10):6144-6152. PubMed ID: 32129785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin read-out in atomic qubits in an all-epitaxial three-dimensional transistor.
    Koch M; Keizer JG; Pakkiam P; Keith D; House MG; Peretz E; Simmons MY
    Nat Nanotechnol; 2019 Feb; 14(2):137-140. PubMed ID: 30617309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aberration-Corrected Scanning Transmission Electron Microscope (STEM) Through-Focus Imaging for Three-Dimensional Atomic Analysis of Bismuth Segregation on Copper [001]/33° Twist Bicrystal Grain Boundaries.
    Wade CA; McLean MJ; Vinci RP; Watanabe M
    Microsc Microanal; 2016 Jun; 22(3):679-89. PubMed ID: 27145975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single Indium Atoms and Few-Atom Indium Clusters Anchored onto Graphene via Silicon Heteroatoms.
    Elibol K; Mangler C; O'Regan DD; Mustonen K; Eder D; Meyer JC; Kotakoski J; Hobbs RG; Susi T; Bayer BC
    ACS Nano; 2021 Sep; 15(9):14373-14383. PubMed ID: 34410707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting excitation and magnetization of individual dopants in a semiconductor.
    Khajetoorians AA; Chilian B; Wiebe J; Schuwalow S; Lechermann F; Wiesendanger R
    Nature; 2010 Oct; 467(7319):1084-7. PubMed ID: 20981095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of dopant atom diffusion in a bulk semiconductor crystal enhanced by a large size mismatch.
    Ishikawa R; Mishra R; Lupini AR; Findlay SD; Taniguchi T; Pantelides ST; Pennycook SJ
    Phys Rev Lett; 2014 Oct; 113(15):155501. PubMed ID: 25375721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.