BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 29750515)

  • 21. The unusual structure of the PiggyMac cysteine-rich domain reveals zinc finger diversity in PiggyBac-related transposases.
    Guérineau M; Bessa L; Moriau S; Lescop E; Bontems F; Mathy N; Guittet E; Bischerour J; Bétermier M; Morellet N
    Mob DNA; 2021 Apr; 12(1):12. PubMed ID: 33926516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequence-specific DNA binding activity of the cross-brace zinc finger motif of the piggyBac transposase.
    Morellet N; Li X; Wieninger SA; Taylor JL; Bischerour J; Moriau S; Lescop E; Bardiaux B; Mathy N; Assrir N; Bétermier M; Nilges M; Hickman AB; Dyda F; Craig NL; Guittet E
    Nucleic Acids Res; 2018 Mar; 46(5):2660-2677. PubMed ID: 29385532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tn5 as a model for understanding DNA transposition.
    Reznikoff WS
    Mol Microbiol; 2003 Mar; 47(5):1199-206. PubMed ID: 12603728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solution conformations of early intermediates in Mos1 transposition.
    Cuypers MG; Trubitsyna M; Callow P; Forsyth VT; Richardson JM
    Nucleic Acids Res; 2013 Feb; 41(3):2020-33. PubMed ID: 23262225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using chimeric piggyBac transposase to achieve directed interplasmid transposition in silkworm Bombyx mori and fruit fly Drosophila cells.
    Wang N; Jiang CY; Jiang MX; Zhang CX; Cheng JA
    J Zhejiang Univ Sci B; 2010 Sep; 11(9):728-34. PubMed ID: 20803777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transposition of a reconstructed Harbinger element in human cells and functional homology with two transposon-derived cellular genes.
    Sinzelle L; Kapitonov VV; Grzela DP; Jursch T; Jurka J; Izsvák Z; Ivics Z
    Proc Natl Acad Sci U S A; 2008 Mar; 105(12):4715-20. PubMed ID: 18339812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chimeric Mos1 and piggyBac transposases result in site-directed integration.
    Maragathavally KJ; Kaminski JM; Coates CJ
    FASEB J; 2006 Sep; 20(11):1880-2. PubMed ID: 16877528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The C-terminal Domain of piggyBac Transposase Is Not Required for DNA Transposition.
    Helou L; Beauclair L; Dardente H; Arensburger P; Buisine N; Jaszczyszyn Y; Guillou F; Lecomte T; Kentsis A; Bigot Y
    J Mol Biol; 2021 Apr; 433(7):166805. PubMed ID: 33450253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insertional mutagenesis by a hybrid piggyBac and sleeping beauty transposon in the rat.
    Furushima K; Jang CW; Chen DW; Xiao N; Overbeek PA; Behringer RR
    Genetics; 2012 Dec; 192(4):1235-48. PubMed ID: 23023007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The improvement and application of piggyBac transposon system in mammals].
    Qian Q; Che J; Ye L; Zhong B
    Yi Chuan; 2014 Oct; 36(10):965-73. PubMed ID: 25406244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transposase subunit architecture and its relationship to genome size and the rate of transposition in prokaryotes and eukaryotes.
    Blundell-Hunter G; Tellier M; Chalmers R
    Nucleic Acids Res; 2018 Oct; 46(18):9637-9646. PubMed ID: 30184164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent transposition of yabusame, a novel piggyBac-like transposable element in the genome of the silkworm, Bombyx mori.
    Daimon T; Mitsuhiro M; Katsuma S; Abe H; Mita K; Shimada T
    Genome; 2010 Aug; 53(8):585-93. PubMed ID: 20725145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Precise marker excision system using an animal-derived piggyBac transposon in plants.
    Nishizawa-Yokoi A; Endo M; Osakabe K; Saika H; Toki S
    Plant J; 2014 Feb; 77(3):454-63. PubMed ID: 24164672
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A versatile, highly efficient, and potentially safer piggyBac transposon system for mammalian genome manipulations.
    Meir YJ; Lin A; Huang MF; Lin JR; Weirauch MT; Chou HC; Lin SJ; Wu SC
    FASEB J; 2013 Nov; 27(11):4429-43. PubMed ID: 23896728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transposase-transposase interactions in MOS1 complexes: a biochemical approach.
    Carpentier G; Jaillet J; Pflieger A; Adet J; Renault S; Augé-Gouillou C
    J Mol Biol; 2011 Jan; 405(4):892-908. PubMed ID: 21110982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional characterization of
    Lyu J; Su Q; Liu J; Chen L; Sun J; Zhang W
    J Zhejiang Univ Sci B; 2022 Jun; 23(6):515-527. PubMed ID: 35686529
    [No Abstract]   [Full Text] [Related]  

  • 37. Defining functional regions of the IS903 transposase.
    Tavakoli NP; DeVost J; Derbyshire KM
    J Mol Biol; 1997 Dec; 274(4):491-504. PubMed ID: 9417930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effect of transposase on the transposition activity of piggyBac transposon transfected into Toxoplasma gondii].
    Song XS; Wei F; Zhang YG; Cao LL; Liu Q
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2013 Jun; 31(3):244-5. PubMed ID: 24812869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector.
    Tamura T; Thibert C; Royer C; Kanda T; Abraham E; Kamba M; Komoto N; Thomas JL; Mauchamp B; Chavancy G; Shirk P; Fraser M; Prudhomme JC; Couble P
    Nat Biotechnol; 2000 Jan; 18(1):81-4. PubMed ID: 10625397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome Engineering of Yarrowia lipolytica with the PiggyBac Transposon System.
    Wagner JM; Palmer CM; Venkataraman MV; Lauffer LH; Wiggers JM; Williams EV; Yi X; Alper HS
    Methods Mol Biol; 2021; 2307():1-24. PubMed ID: 33847979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.