These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 29750580)

  • 41. Software thresholds alter the bias of actigraphy for monitoring sleep in team-sport athletes.
    Fuller KL; Juliff L; Gore CJ; Peiffer JJ; Halson SL
    J Sci Med Sport; 2017 Aug; 20(8):756-760. PubMed ID: 28189461
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of sleep extension on cognitive/motor performance and motivation in military tactical athletes.
    Ritland BM; Simonelli G; Gentili RJ; Smith JC; He X; Mantua J; Balkin TJ; Hatfield BD
    Sleep Med; 2019 Jun; 58():48-55. PubMed ID: 31096123
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Actigraphic assessment of a polysomnographic-recorded nap: a validation study.
    Kanady JC; Drummond SP; Mednick SC
    J Sleep Res; 2011 Mar; 20(1 Pt 2):214-22. PubMed ID: 20626612
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Validity of a commercial wearable sleep tracker in adult insomnia disorder patients and good sleepers.
    Kang SG; Kang JM; Ko KP; Park SC; Mariani S; Weng J
    J Psychosom Res; 2017 Jun; 97():38-44. PubMed ID: 28606497
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Circadian rest-activity rhythm for maintenance of body shape.
    Kume S; Tokumitsu N; Sakamoto S; Hagiwara H
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():822-5. PubMed ID: 22254437
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient embedded sleep wake classification for open-source actigraphy.
    Banfi T; Valigi N; di Galante M; d'Ascanio P; Ciuti G; Faraguna U
    Sci Rep; 2021 Jan; 11(1):345. PubMed ID: 33431918
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Naps as integral parts of the wake time within the human sleep-wake cycle.
    Aschoff J
    J Biol Rhythms; 1994; 9(2):145-55. PubMed ID: 7873774
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accuracy of Fitbit Wristbands in Measuring Sleep Stage Transitions and the Effect of User-Specific Factors.
    Liang Z; Chapa-Martell MA
    JMIR Mhealth Uhealth; 2019 Jun; 7(6):e13384. PubMed ID: 31172956
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Actigraphic assessment of sleep/wake behavior in central disorders of hypersomnolence.
    Filardi M; Pizza F; Martoni M; Vandi S; Plazzi G; Natale V
    Sleep Med; 2015 Jan; 16(1):126-30. PubMed ID: 25547035
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improving Sleep Quality Assessment Using Wearable Sensors by Including Information From Postural/Sleep Position Changes and Body Acceleration: A Comparison of Chest-Worn Sensors, Wrist Actigraphy, and Polysomnography.
    Razjouyan J; Lee H; Parthasarathy S; Mohler J; Sharafkhaneh A; Najafi B
    J Clin Sleep Med; 2017 Nov; 13(11):1301-1310. PubMed ID: 28992827
    [TBL] [Abstract][Full Text] [Related]  

  • 51. State of the science and recommendations for using wearable technology in sleep and circadian research.
    de Zambotti M; Goldstein C; Cook J; Menghini L; Altini M; Cheng P; Robillard R
    Sleep; 2024 Apr; 47(4):. PubMed ID: 38149978
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Temporal placement of a nap for alertness: contributions of circadian phase and prior wakefulness.
    Dinges DF; Orne MT; Whitehouse WG; Orne EC
    Sleep; 1987 Aug; 10(4):313-29. PubMed ID: 3659730
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Altered sleep-wake patterns in blindness: a combined actigraphy and psychometric study.
    Aubin S; Gacon C; Jennum P; Ptito M; Kupers R
    Sleep Med; 2016 Aug; 24():100-108. PubMed ID: 27810175
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Three decades of continuous wrist-activity recording: analysis of sleep duration.
    Borbély AA; Rusterholz T; Achermann P
    J Sleep Res; 2017 Apr; 26(2):188-194. PubMed ID: 28093825
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sleep, napping and alertness during an overwintering mission at Belgrano II Argentine Antarctic station.
    Folgueira A; Simonelli G; Plano S; Tortello C; Cuiuli JM; Blanchard A; Patagua A; Brager AJ; Capaldi VF; Aubert AE; Barbarito M; Golombek DA; Vigo DE
    Sci Rep; 2019 Jul; 9(1):10875. PubMed ID: 31350440
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Wearable Monitoring of Physical Functioning and Disability Changes, Circadian Rhythms and Sleep Patterns in Nursing Home Residents.
    Merilahti J; Viramo P; Korhonen I
    IEEE J Biomed Health Inform; 2016 May; 20(3):856-864. PubMed ID: 25861091
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessing the effects of sleep on neurocognitive performance and injury rate in adolescent athletes using actigraphy.
    Patel AR; Hsu A; Perez IA; Wren TAL; Edison BR
    Res Sports Med; 2020; 28(4):498-506. PubMed ID: 31971011
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Automated feature extraction from population wearable device data identified novel loci associated with sleep and circadian rhythms.
    Li X; Zhao H
    PLoS Genet; 2020 Oct; 16(10):e1009089. PubMed ID: 33075057
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sleep estimation from wrist activity in patients with major depression.
    Jean-Louis G; Mendlowicz MV; Gillin JC; Rapaport MH; Kelsoe JR; Zizi F; Landolt H; von Gizycki H
    Physiol Behav; 2000 Jul 1-15; 70(1-2):49-53. PubMed ID: 10978477
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A comparison of three different sleep schedules for reducing daytime sleepiness in narcolepsy.
    Rogers AE; Aldrich MS; Lin X
    Sleep; 2001 Jun; 24(4):385-91. PubMed ID: 11403522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.