These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 29750580)
61. Young women with major depression live on higher homeostatic sleep pressure than healthy controls. Frey S; Birchler-Pedross A; Hofstetter M; Brunner P; Götz T; Münch M; Blatter K; Knoblauch V; Wirz-Justice A; Cajochen C Chronobiol Int; 2012 Apr; 29(3):278-94. PubMed ID: 22390241 [TBL] [Abstract][Full Text] [Related]
62. The impact of short night-time naps on performance, sleepiness and mood during a simulated night shift. Centofanti SA; Hilditch CJ; Dorrian J; Banks S Chronobiol Int; 2016; 33(6):706-15. PubMed ID: 27077524 [TBL] [Abstract][Full Text] [Related]
63. What is segmented sleep? Actigraphy field validation for daytime sleep and nighttime wake. Samson DR; Yetish GM; Crittenden AN; Mabulla IA; Mabulla AZP; Nunn CL Sleep Health; 2016 Dec; 2(4):341-347. PubMed ID: 29073393 [TBL] [Abstract][Full Text] [Related]
64. Circadian rhythm of wrist temperature in normal-living subjects A candidate of new index of the circadian system. Sarabia JA; Rol MA; Mendiola P; Madrid JA Physiol Behav; 2008 Nov; 95(4):570-80. PubMed ID: 18761026 [TBL] [Abstract][Full Text] [Related]
65. 45-hour continuous quintuple-site actimetry: relations between trunk and limb movements and effects of circadian sleep-wake rhythmicity. Middelkoop HA; van Dam EM; Smilde-van den Doel DA; Van Dijk G Psychophysiology; 1997 Mar; 34(2):199-203. PubMed ID: 9090270 [TBL] [Abstract][Full Text] [Related]
66. The impact of a week of simulated night work on sleep, circadian phase, and performance. Lamond N; Dorrian J; Roach GD; McCulloch K; Holmes AL; Burgess HJ; Fletcher A; Dawson D Occup Environ Med; 2003 Nov; 60(11):e13. PubMed ID: 14573724 [TBL] [Abstract][Full Text] [Related]
68. Wrist actigraphy in estimation of sleep and wake in intellectually disabled subjects with motor handicaps. Laakso ML; Leinonen L; Lindblom N; Joutsiniemi SL; Kaski M Sleep Med; 2004 Nov; 5(6):541-50. PubMed ID: 15511700 [TBL] [Abstract][Full Text] [Related]
69. Good sleep, bad sleep! The role of daytime naps in healthy adults. Dhand R; Sohal H Curr Opin Pulm Med; 2006 Nov; 12(6):379-82. PubMed ID: 17053484 [TBL] [Abstract][Full Text] [Related]
71. Evaluation of Sleep Parameters and Sleep Staging (Slow Wave Sleep) in Athletes by Fitbit Alta HR, a Consumer Sleep Tracking Device. Kawasaki Y; Kasai T; Sakurama Y; Sekiguchi A; Kitamura E; Midorikawa I; Shiroshita N; Kawana F; Ogasawara E; Kitade M; Koikawa N; Matsuda T Nat Sci Sleep; 2022; 14():819-827. PubMed ID: 35502231 [TBL] [Abstract][Full Text] [Related]
72. Post-sleep inertia performance benefits of longer naps in simulated nightwork and extended operations. Mulrine HM; Signal TL; van den Berg MJ; Gander PH Chronobiol Int; 2012 Nov; 29(9):1249-57. PubMed ID: 23002951 [TBL] [Abstract][Full Text] [Related]
73. Effect of wearables on sleep in healthy individuals: a randomized crossover trial and validation study. Berryhill S; Morton CJ; Dean A; Berryhill A; Provencio-Dean N; Patel SI; Estep L; Combs D; Mashaqi S; Gerald LB; Krishnan JA; Parthasarathy S J Clin Sleep Med; 2020 May; 16(5):775-783. PubMed ID: 32043961 [TBL] [Abstract][Full Text] [Related]
74. The benefits of four weeks of melatonin treatment on circadian patterns in resistance-trained athletes. Leonardo-Mendonça RC; Martinez-Nicolas A; de Teresa Galván C; Ocaña-Wilhelmi J; Rusanova I; Guerra-Hernández E; Escames G; Acuña-Castroviejo D Chronobiol Int; 2015; 32(8):1125-34. PubMed ID: 26361788 [TBL] [Abstract][Full Text] [Related]
75. Validation of an innovative method, based on tilt sensing, for the assessment of activity and body position. Bonmati-Carrion MA; Middleton B; Revell VL; Skene DJ; Rol MA; Madrid JA Chronobiol Int; 2015 Jun; 32(5):701-10. PubMed ID: 25839208 [TBL] [Abstract][Full Text] [Related]
76. Effects of sleep inertia after daytime naps vary with executive load and time of day. Groeger JA; Lo JC; Burns CG; Dijk DJ Behav Neurosci; 2011 Apr; 125(2):252-60. PubMed ID: 21463024 [TBL] [Abstract][Full Text] [Related]
77. Intra-individual variability in the sleep of senior and junior rugby league athletes during the competitive season. Caia J; Halson SL; Scott TJ; Kelly VG Chronobiol Int; 2017; 34(9):1239-1247. PubMed ID: 28910543 [TBL] [Abstract][Full Text] [Related]
78. Validation of Actigraphy in Middle Childhood. Meltzer LJ; Wong P; Biggs SN; Traylor J; Kim JY; Bhattacharjee R; Narang I; Marcus CL; Sleep; 2016 Jun; 39(6):1219-24. PubMed ID: 27091520 [TBL] [Abstract][Full Text] [Related]
79. Inter-individual differences in sleep response to shift work in novice police officers - A prospective study. Lammers-van der Holst HM; Van Dongen HP; Drosopoulos S; Kerkhof GA Chronobiol Int; 2016; 33(6):671-7. PubMed ID: 27088753 [TBL] [Abstract][Full Text] [Related]
80. Exploring Variations in Sleep Perception: Comparative Study of Chatbot Sleep Logs and Fitbit Sleep Data. Jang H; Lee S; Son Y; Seo S; Baek Y; Mun S; Kim H; Kim I; Kim J JMIR Mhealth Uhealth; 2023 Nov; 11():e49144. PubMed ID: 37988148 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]