These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29750942)

  • 1. Long term stability of a HIV-1 neutralizing monoclonal antibody using isothermal calorimetry.
    Clarkson BR; Chaudhuri R; Schön A; Cooper JW; Kueltzo L; Freire E
    Anal Biochem; 2018 Aug; 554():61-69. PubMed ID: 29750942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isothermal calorimetry of a monoclonal antibody using a conventional differential scanning calorimeter.
    Clarkson BR; Freire E
    Anal Biochem; 2018 Oct; 558():50-52. PubMed ID: 30096280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature stability of proteins: Analysis of irreversible denaturation using isothermal calorimetry.
    Schön A; Clarkson BR; Jaime M; Freire E
    Proteins; 2017 Nov; 85(11):2009-2016. PubMed ID: 28722205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extrapolating differential scanning calorimetry data for monoclonal antibodies to low temperatures.
    Schön A; Kwon YD; Bender MF; Freire E
    Anal Biochem; 2024 Aug; 691():115533. PubMed ID: 38642818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Throughput Prediction Approach for Monoclonal Antibody Aggregation at High Concentration.
    Zidar M; Šušterič A; Ravnik M; Kuzman D
    Pharm Res; 2017 Sep; 34(9):1831-1839. PubMed ID: 28593474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isothermal chemical denaturation as a complementary tool to overcome limitations of thermal differential scanning fluorimetry in predicting physical stability of protein formulations.
    Svilenov H; Markoja U; Winter G
    Eur J Pharm Biopharm; 2018 Apr; 125():106-113. PubMed ID: 29329817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting accelerated aggregation rates for monoclonal antibody formulations, and challenges for low-temperature predictions.
    Brummitt RK; Nesta DP; Roberts CJ
    J Pharm Sci; 2011 Oct; 100(10):4234-43. PubMed ID: 21671226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthogonal Methods for Characterizing the Unfolding of Therapeutic Monoclonal Antibodies: Differential Scanning Calorimetry, Isothermal Chemical Denaturation, and Intrinsic Fluorescence with Concomitant Static Light Scattering.
    Temel DB; Landsman P; Brader ML
    Methods Enzymol; 2016; 567():359-89. PubMed ID: 26794361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coformulation of Broadly Neutralizing Antibodies 3BNC117 and PGT121: Analytical Challenges During Preformulation Characterization and Storage Stability Studies.
    Patel A; Gupta V; Hickey J; Nightlinger NS; Rogers RS; Siska C; Joshi SB; Seaman MS; Volkin DB; Kerwin BA
    J Pharm Sci; 2018 Dec; 107(12):3032-3046. PubMed ID: 30176252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversibility and irreversibility in the temperature denaturation of monoclonal antibodies.
    Schön A; Freire E
    Anal Biochem; 2021 Aug; 626():114240. PubMed ID: 33964250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-Term Stability and Reversible Thermal Unfolding of Antibody Structure at Low pH: Case Study.
    Fukada H; Tsumoto K; Arakawa T; Ejima D
    J Pharm Sci; 2018 Nov; 107(11):2965-2967. PubMed ID: 30017886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational stability, reversibility and heat-induced aggregation of α-1-acid glycoprotein.
    Iwura T; Fukuda J; Yamazaki K; Arisaka F
    J Biochem; 2014 Dec; 156(6):345-52. PubMed ID: 25147193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential Scanning Calorimetry to Quantify Heat-Induced Aggregation in Concentrated Protein Solutions.
    Jacobs MR; Grace M; Blumlein A; McManus JJ
    Methods Mol Biol; 2019; 2039():117-129. PubMed ID: 31342423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Submicron Aggregation of Chemically Denatured Monoclonal Antibody.
    Rowe JB; Flynn RP; Wooten HR; Noufer HA; Cancel RA; Zhang J; Subramony JA; Pechenov S; Wang Y
    Mol Pharm; 2018 Oct; 15(10):4710-4721. PubMed ID: 30142275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of biophysical characterization techniques in predicting monoclonal antibody stability.
    Thiagarajan G; Semple A; James JK; Cheung JK; Shameem M
    MAbs; 2016; 8(6):1088-97. PubMed ID: 27210456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Arginine Salts on the Thermal Stability and Aggregation Kinetics of Monoclonal Antibody: Dominant Role of Anions.
    Zhang J; Frey V; Corcoran M; Zhang-van Enk J; Subramony JA
    Mol Pharm; 2016 Oct; 13(10):3362-3369. PubMed ID: 27541006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Value of DSC in Characterization and Optimization of Protein Stability.
    Bowers K; Markova N
    Methods Mol Biol; 2019; 1964():33-44. PubMed ID: 30929233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of thermal unfolding and aggregation profiles of a series of developable therapeutic monoclonal antibodies.
    Brader ML; Estey T; Bai S; Alston RW; Lucas KK; Lantz S; Landsman P; Maloney KM
    Mol Pharm; 2015 Apr; 12(4):1005-17. PubMed ID: 25687223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial unfolding of a monoclonal antibody: role of a single domain in driving protein aggregation.
    Mehta SB; Bee JS; Randolph TW; Carpenter JF
    Biochemistry; 2014 May; 53(20):3367-77. PubMed ID: 24804773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ReFOLD assay for protein formulation studies and prediction of protein aggregation during long-term storage.
    Svilenov H; Winter G
    Eur J Pharm Biopharm; 2019 Apr; 137():131-139. PubMed ID: 30818009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.