BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29751008)

  • 1. Impact of Glycosylation on the Local Backbone Flexibility of Well-Defined IgG1-Fc Glycoforms Using Hydrogen Exchange-Mass Spectrometry.
    More AS; Toth RT; Okbazghi SZ; Middaugh CR; Joshi SB; Tolbert TJ; Volkin DB; Weis DD
    J Pharm Sci; 2018 Sep; 107(9):2315-2324. PubMed ID: 29751008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production, Characterization, and Biological Evaluation of Well-Defined IgG1 Fc Glycoforms as a Model System for Biosimilarity Analysis.
    Okbazghi SZ; More AS; White DR; Duan S; Shah IS; Joshi SB; Middaugh CR; Volkin DB; Tolbert TJ
    J Pharm Sci; 2016 Feb; 105(2):559-574. PubMed ID: 26869419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlating the Impact of Well-Defined Oligosaccharide Structures on Physical Stability Profiles of IgG1-Fc Glycoforms.
    More AS; Toprani VM; Okbazghi SZ; Kim JH; Joshi SB; Middaugh CR; Tolbert TJ; Volkin DB
    J Pharm Sci; 2016 Feb; 105(2):588-601. PubMed ID: 26869421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Glycan Structure on the Stability and Receptor Binding of an IgG4-Fc.
    Kang H; Larson NR; White DR; Middaugh CR; Tolbert T; Schöneich C
    J Pharm Sci; 2020 Jan; 109(1):677-689. PubMed ID: 31669606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Evaluation of the Chemical Stability of 4 Well-Defined Immunoglobulin G1-Fc Glycoforms.
    Mozziconacci O; Okbazghi S; More AS; Volkin DB; Tolbert T; Schöneich C
    J Pharm Sci; 2016 Feb; 105(2):575-587. PubMed ID: 26869420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Structural Role of Antibody N-Glycosylation in Receptor Interactions.
    Subedi GP; Barb AW
    Structure; 2015 Sep; 23(9):1573-1583. PubMed ID: 26211613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemoenzymatic synthesis and Fcγ receptor binding of homogeneous glycoforms of antibody Fc domain. Presence of a bisecting sugar moiety enhances the affinity of Fc to FcγIIIa receptor.
    Zou G; Ochiai H; Huang W; Yang Q; Li C; Wang LX
    J Am Chem Soc; 2011 Nov; 133(46):18975-91. PubMed ID: 22004528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Fc-Glycan Structure on the Conformational Stability of IgG Revealed by Hydrogen/Deuterium Exchange and Limited Proteolysis.
    Fang J; Richardson J; Du Z; Zhang Z
    Biochemistry; 2016 Feb; 55(6):860-8. PubMed ID: 26812426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical stability comparisons of IgG1-Fc variants: effects of N-glycosylation site occupancy and Asp/Gln residues at site Asn 297.
    Alsenaidy MA; Okbazghi SZ; Kim JH; Joshi SB; Middaugh CR; Tolbert TJ; Volkin DB
    J Pharm Sci; 2014 Jun; 103(6):1613-1627. PubMed ID: 24740840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variations in oligosaccharide-protein interactions in immunoglobulin G determine the site-specific glycosylation profiles and modulate the dynamic motion of the Fc oligosaccharides.
    Wormald MR; Rudd PM; Harvey DJ; Chang SC; Scragg IG; Dwek RA
    Biochemistry; 1997 Feb; 36(6):1370-80. PubMed ID: 9063885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization of the Man5 glycoform of human IgG3 Fc.
    Shah IS; Lovell S; Mehzabeen N; Battaile KP; Tolbert TJ
    Mol Immunol; 2017 Dec; 92():28-37. PubMed ID: 29031045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of N-Glycan Composition on Structure and Dynamics of IgG1 Fc and Their Implications for Antibody Engineering.
    Lee HS; Im W
    Sci Rep; 2017 Oct; 7(1):12659. PubMed ID: 28978918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD16a with oligomannose-type
    Subedi GP; Barb AW
    J Biol Chem; 2018 Oct; 293(43):16842-16850. PubMed ID: 30213862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity.
    Krapp S; Mimura Y; Jefferis R; Huber R; Sondermann P
    J Mol Biol; 2003 Jan; 325(5):979-89. PubMed ID: 12527303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms.
    Wada R; Matsui M; Kawasaki N
    MAbs; 2019; 11(2):350-372. PubMed ID: 30466347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational effects of N-glycan core fucosylation of immunoglobulin G Fc region on its interaction with Fcγ receptor IIIa.
    Sakae Y; Satoh T; Yagi H; Yanaka S; Yamaguchi T; Isoda Y; Iida S; Okamoto Y; Kato K
    Sci Rep; 2017 Oct; 7(1):13780. PubMed ID: 29062024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of IgG1 Fc Deamidation at Asparagine 325 and Its Impact on Antibody-dependent Cell-mediated Cytotoxicity and FcγRIIIa Binding.
    Lu X; Machiesky LA; De Mel N; Du Q; Xu W; Washabaugh M; Jiang XR; Wang J
    Sci Rep; 2020 Jan; 10(1):383. PubMed ID: 31941950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrasting glycosylation profiles between Fab and Fc of a human IgG protein studied by electrospray ionization mass spectrometry.
    Mimura Y; Ashton PR; Takahashi N; Harvey DJ; Jefferis R
    J Immunol Methods; 2007 Sep; 326(1-2):116-26. PubMed ID: 17714731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy.
    Yamaguchi Y; Nishimura M; Nagano M; Yagi H; Sasakawa H; Uchida K; Shitara K; Kato K
    Biochim Biophys Acta; 2006 Apr; 1760(4):693-700. PubMed ID: 16343775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific glycosylation of an aglycosylated human IgG1-Fc antibody protein generates neoglycoproteins with enhanced function.
    Watt GM; Lund J; Levens M; Kolli VS; Jefferis R; Boons GJ
    Chem Biol; 2003 Sep; 10(9):807-14. PubMed ID: 14522051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.