BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 29751014)

  • 21. Chemical Modification of Guide RNAs for Improved CRISPR Activity in CD34+ Human Hematopoietic Stem and Progenitor Cells.
    Shapiro J; Tovin A; Iancu O; Allen D; Hendel A
    Methods Mol Biol; 2021; 2162():37-48. PubMed ID: 32926376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome Editing in Penicillium chrysogenum Using Cas9 Ribonucleoprotein Particles.
    Pohl C; Mózsik L; Driessen AJM; Bovenberg RAL; Nygård YI
    Methods Mol Biol; 2018; 1772():213-232. PubMed ID: 29754231
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Doxycycline-Dependent Self-Inactivation of CRISPR-Cas9 to Temporally Regulate On- and Off-Target Editing.
    Kelkar A; Zhu Y; Groth T; Stolfa G; Stablewski AB; Singhi N; Nemeth M; Neelamegham S
    Mol Ther; 2020 Jan; 28(1):29-41. PubMed ID: 31601489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NHEJ-Mediated Repair of CRISPR-Cas9-Induced DNA Breaks Efficiently Corrects Mutations in HSPCs from Patients with Fanconi Anemia.
    Román-Rodríguez FJ; Ugalde L; Álvarez L; Díez B; Ramírez MJ; Risueño C; Cortón M; Bogliolo M; Bernal S; March F; Ayuso C; Hanenberg H; Sevilla J; Rodríguez-Perales S; Torres-Ruiz R; Surrallés J; Bueren JA; Río P
    Cell Stem Cell; 2019 Nov; 25(5):607-621.e7. PubMed ID: 31543367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR-Based Technologies: Impact of RNA-Targeting Systems.
    Terns MP
    Mol Cell; 2018 Nov; 72(3):404-412. PubMed ID: 30388409
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of CRISPR/Cas9 Delivery to Human Hematopoietic Stem and Progenitor Cells for Therapeutic Genomic Rearrangements.
    Lattanzi A; Meneghini V; Pavani G; Amor F; Ramadier S; Felix T; Antoniani C; Masson C; Alibeu O; Lee C; Porteus MH; Bao G; Amendola M; Mavilio F; Miccio A
    Mol Ther; 2019 Jan; 27(1):137-150. PubMed ID: 30424953
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing.
    Xue C; Greene EC
    Trends Genet; 2021 Jul; 37(7):639-656. PubMed ID: 33896583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of a generic CRISPR-Cas9 approach using the same sgRNA to perform gene editing at distinct loci.
    Najah S; Saulnier C; Pernodet JL; Bury-Moné S
    BMC Biotechnol; 2019 Mar; 19(1):18. PubMed ID: 30894153
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR Guide RNA Design Guidelines for Efficient Genome Editing.
    Schindele P; Wolter F; Puchta H
    Methods Mol Biol; 2020; 2166():331-342. PubMed ID: 32710418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of CRISPR-Cas9 induced precise gene editing by targeting histone H2A-K15 ubiquitination.
    Bashir S; Dang T; Rossius J; Wolf J; Kühn R
    BMC Biotechnol; 2020 Oct; 20(1):57. PubMed ID: 33097066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9.
    Yoder KE; Bundschuh R
    Sci Rep; 2016 Jul; 6():29530. PubMed ID: 27404981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR-P 2.0: An Improved CRISPR-Cas9 Tool for Genome Editing in Plants.
    Liu H; Ding Y; Zhou Y; Jin W; Xie K; Chen LL
    Mol Plant; 2017 Mar; 10(3):530-532. PubMed ID: 28089950
    [No Abstract]   [Full Text] [Related]  

  • 34. [CRISPR/CAS9, the King of Genome Editing Tools].
    Bannikov AV; Lavrov AV
    Mol Biol (Mosk); 2017; 51(4):582-594. PubMed ID: 28900076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Medical applications of clustered regularly interspaced short palindromic repeats (CRISPR/Cas) tool: A comprehensive overview.
    Araldi RP; Khalil C; Grignet PH; Teixeira MR; de Melo TC; Módolo DG; Fernandes LGV; Ruiz J; de Souza EB
    Gene; 2020 Jun; 745():144636. PubMed ID: 32244056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maximizing CRISPR/Cas9 phenotype penetrance applying predictive modeling of editing outcomes in Xenopus and zebrafish embryos.
    Naert T; Tulkens D; Edwards NA; Carron M; Shaidani NI; Wlizla M; Boel A; Demuynck S; Horb ME; Coucke P; Willaert A; Zorn AM; Vleminckx K
    Sci Rep; 2020 Sep; 10(1):14662. PubMed ID: 32887910
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical Control of Genome Editing by Photoactivatable Cas9.
    Otabe T; Nihongaki Y; Sato M
    Methods Mol Biol; 2021; 2312():225-233. PubMed ID: 34228293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR/Cas9 in Genome Editing and Beyond.
    Wang H; La Russa M; Qi LS
    Annu Rev Biochem; 2016 Jun; 85():227-64. PubMed ID: 27145843
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent advances in the CRISPR genome editing tool set.
    Moon SB; Kim DY; Ko JH; Kim YS
    Exp Mol Med; 2019 Nov; 51(11):1-11. PubMed ID: 31685795
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Versatile and precise gene-targeting strategies for functional studies in mammalian cell lines.
    Wassef M; Luscan A; Battistella A; Le Corre S; Li H; Wallace MR; Vidaud M; Margueron R
    Methods; 2017 May; 121-122():45-54. PubMed ID: 28499832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.