These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 29751099)

  • 41. Processive Recoding and Metazoan Evolution of Selenoprotein P: Up to 132 UGAs in Molluscs.
    Baclaocos J; Santesmasses D; Mariotti M; Bierła K; Vetick MB; Lynch S; McAllen R; Mackrill JJ; Loughran G; Guigó R; Szpunar J; Copeland PR; Gladyshev VN; Atkins JF
    J Mol Biol; 2019 Nov; 431(22):4381-4407. PubMed ID: 31442478
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Selenoprofiles: A Computational Pipeline for Annotation of Selenoproteins.
    Santesmasses D; Mariotti M; Guigó R
    Methods Mol Biol; 2018; 1661():17-28. PubMed ID: 28917034
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biological implications of selenium and its role in trypanosomiasis treatment.
    da Silva MT; Silva-Jardim I; Thiemann OH
    Curr Med Chem; 2014; 21(15):1772-80. PubMed ID: 24251578
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Factors impacting the aminoglycoside-induced UGA stop codon readthrough in selenoprotein translation.
    Martitz J; Hofmann PJ; Johannes J; Köhrle J; Schomburg L; Renko K
    J Trace Elem Med Biol; 2016 Sep; 37():104-110. PubMed ID: 27157664
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel structural determinants in human SECIS elements modulate the translational recoding of UGA as selenocysteine.
    Latrèche L; Jean-Jean O; Driscoll DM; Chavatte L
    Nucleic Acids Res; 2009 Sep; 37(17):5868-80. PubMed ID: 19651878
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Processive incorporation of multiple selenocysteine residues is driven by a novel feature of the selenocysteine insertion sequence.
    Shetty SP; Sturts R; Vetick M; Copeland PR
    J Biol Chem; 2018 Dec; 293(50):19377-19386. PubMed ID: 30323062
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Eukaryotic initiation factor 4a3 is a selenium-regulated RNA-binding protein that selectively inhibits selenocysteine incorporation.
    Budiman ME; Bubenik JL; Miniard AC; Middleton LM; Gerber CA; Cash A; Driscoll DM
    Mol Cell; 2009 Aug; 35(4):479-89. PubMed ID: 19716792
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Selenocysteine Insertion at a Predefined UAG Codon in a Release Factor 1 (RF1)-depleted
    Cheng Q; Arnér ES
    J Biol Chem; 2017 Mar; 292(13):5476-5487. PubMed ID: 28193838
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A model for Sec incorporation with the regions upstream of the UGA Sec codon to play a key role.
    Goto C; Osaka T; Mizutani T
    Biofactors; 2001; 14(1-4):25-35. PubMed ID: 11568437
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protein factors mediating selenoprotein synthesis.
    Lescure A; Fagegaltier D; Carbon P; Krol A
    Curr Protein Pept Sci; 2002 Feb; 3(1):143-51. PubMed ID: 12370018
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Wobble decoding by the Escherichia coli selenocysteine insertion machinery.
    Xu J; Croitoru V; Rutishauser D; Cheng Q; Arnér ES
    Nucleic Acids Res; 2013 Nov; 41(21):9800-11. PubMed ID: 23982514
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Selenocysteine insertion sequence binding protein 2L is implicated as a novel post-transcriptional regulator of selenoprotein expression.
    Donovan J; Copeland PR
    PLoS One; 2012; 7(4):e35581. PubMed ID: 22530054
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interplay between termination and translation machinery in eukaryotic selenoprotein synthesis.
    Grundner-Culemann E; Martin GW; Tujebajeva R; Harney JW; Berry MJ
    J Mol Biol; 2001 Jul; 310(4):699-707. PubMed ID: 11453681
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of selenocysteine incorporation into the selenium transport protein, selenoprotein P.
    Shetty SP; Shah R; Copeland PR
    J Biol Chem; 2014 Sep; 289(36):25317-26. PubMed ID: 25063811
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ribosome Fate during Decoding of UGA-Sec Codons.
    Copeland PR; Howard MT
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948001
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The unique tRNA
    Serrão VHB; Silva IR; da Silva MTA; Scortecci JF; de Freitas Fernandes A; Thiemann OH
    Amino Acids; 2018 Sep; 50(9):1145-1167. PubMed ID: 29948343
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Selenium metabolism in zebrafish: multiplicity of selenoprotein genes and expression of a protein containing 17 selenocysteine residues.
    Kryukov GV; Gladyshev VN
    Genes Cells; 2000 Dec; 5(12):1049-60. PubMed ID: 11168591
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.
    Touat-Hamici Z; Bulteau AL; Bianga J; Jean-Jacques H; Szpunar J; Lobinski R; Chavatte L
    Biochim Biophys Acta Gen Subj; 2018 Nov; 1862(11):2493-2505. PubMed ID: 29660373
    [TBL] [Abstract][Full Text] [Related]  

  • 59. New Directions for Understanding the Codon Redefinition Required for Selenocysteine Incorporation.
    Howard MT; Copeland PR
    Biol Trace Elem Res; 2019 Nov; 192(1):18-25. PubMed ID: 31342342
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The efficiency of selenocysteine incorporation is regulated by translation initiation factors.
    Donovan J; Copeland PR
    J Mol Biol; 2010 Jul; 400(4):659-64. PubMed ID: 20488192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.