BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29751103)

  • 1. Markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida.
    Choi KR; Cho JS; Cho IJ; Park D; Lee SY
    Metab Eng; 2018 May; 47():463-474. PubMed ID: 29751103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocols for RecET-based markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida.
    Choi KR; Lee SY
    Microb Biotechnol; 2020 Jan; 13(1):199-209. PubMed ID: 30761747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved terephthalic acid production from p-xylene using metabolically engineered Pseudomonas putida.
    Luo ZW; Choi KR; Lee SY
    Metab Eng; 2023 Mar; 76():75-86. PubMed ID: 36693471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudomonas putida rDNA is a favored site for the expression of biosynthetic genes.
    Domröse A; Hage-Hülsmann J; Thies S; Weihmann R; Kruse L; Otto M; Wierckx N; Jaeger KE; Drepper T; Loeschcke A
    Sci Rep; 2019 May; 9(1):7028. PubMed ID: 31065014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of 76 genes relevant to flagella and pili formation to facilitate polyhydroxyalkanoate production in Pseudomonas putida.
    Wang J; Ma W; Wang Y; Lin L; Wang T; Wang Y; Li Y; Wang X
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10523-10539. PubMed ID: 30338358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing.
    Wu Z; Chen Z; Gao X; Li J; Shang G
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2783-2795. PubMed ID: 30762073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudomonas putida KT2440 markerless gene deletion using a combination of λ Red recombineering and Cre/loxP site-specific recombination.
    Luo X; Yang Y; Ling W; Zhuang H; Li Q; Shang G
    FEMS Microbiol Lett; 2016 Feb; 363(4):. PubMed ID: 26802072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stepwise genetic engineering of Pseudomonas putida enables robust heterologous production of prodigiosin and glidobactin A.
    Cook TB; Jacobson TB; Venkataraman MV; Hofstetter H; Amador-Noguez D; Thomas MG; Pfleger BF
    Metab Eng; 2021 Sep; 67():112-124. PubMed ID: 34175462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Pseudomonas putida for methylmalonyl-CoA biosynthesis to enable complex heterologous secondary metabolite formation.
    Gross F; Ring MW; Perlova O; Fu J; Schneider S; Gerth K; Kuhlmann S; Stewart AF; Zhang Y; Müller R
    Chem Biol; 2006 Dec; 13(12):1253-64. PubMed ID: 17185221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocols for yTREX/Tn5-based gene cluster expression in Pseudomonas putida.
    Weihmann R; Domröse A; Drepper T; Jaeger KE; Loeschcke A
    Microb Biotechnol; 2020 Jan; 13(1):250-262. PubMed ID: 31162833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic tools for reliable gene expression and recombineering in Pseudomonas putida.
    Cook TB; Rand JM; Nurani W; Courtney DK; Liu SA; Pfleger BF
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):517-527. PubMed ID: 29299733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Ssr protein (T1E_1405) from Pseudomonas putida DOT-T1E enables oligonucleotide-based recombineering in platform strain P. putida EM42.
    Aparicio T; Jensen SI; Nielsen AT; de Lorenzo V; Martínez-García E
    Biotechnol J; 2016 Oct; 11(10):1309-1319. PubMed ID: 27367544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An upp-based markerless gene replacement method for genome reduction and metabolic pathway engineering in Pseudomonas mendocina NK-01 and Pseudomonas putida KT2440.
    Wang Y; Zhang C; Gong T; Zuo Z; Zhao F; Fan X; Yang C; Song C
    J Microbiol Methods; 2015 Jun; 113():27-33. PubMed ID: 25828098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RecET direct cloning and Redαβ recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression.
    Wang H; Li Z; Jia R; Hou Y; Yin J; Bian X; Li A; Müller R; Stewart AF; Fu J; Zhang Y
    Nat Protoc; 2016 Jul; 11(7):1175-90. PubMed ID: 27254463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterologous expression and genetic engineering of the tubulysin biosynthetic gene cluster using Red/ET recombineering and inactivation mutagenesis.
    Chai Y; Shan S; Weissman KJ; Hu S; Zhang Y; Müller R
    Chem Biol; 2012 Mar; 19(3):361-71. PubMed ID: 22444591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting Pseudomonas putida for drug development.
    Bechthold A
    Chem Biol; 2005 Mar; 12(3):261. PubMed ID: 15797207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ReScribe: An Unrestrained Tool Combining Multiplex Recombineering and Minimal-PAM ScCas9 for Genome Recoding
    Asin-Garcia E; Martin-Pascual M; Garcia-Morales L; van Kranenburg R; Martins Dos Santos VAP
    ACS Synth Biol; 2021 Oct; 10(10):2672-2688. PubMed ID: 34547891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression.
    Martínez-García E; Nikel PI; Aparicio T; de Lorenzo V
    Microb Cell Fact; 2014 Nov; 13():159. PubMed ID: 25384394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombineering and I-SceI-mediated Pseudomonas putida KT2440 scarless gene deletion.
    Chen Z; Ling W; Shang G
    FEMS Microbiol Lett; 2016 Nov; 363(21):. PubMed ID: 27765807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel approach for Escherichia coli genome editing combining in vivo cloning and targeted long-length chromosomal insertion.
    Hook CD; Samsonov VV; Ublinskaya AA; Kuvaeva TM; Andreeva EV; Gorbacheva LY; Stoynova NV
    J Microbiol Methods; 2016 Nov; 130():83-91. PubMed ID: 27567891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.