These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 29751409)
1. Impact of sorption processes on PCE concentrations in organohalide-respiring aquifer sediment samples. Leitner S; Reichenauer TG; Watzinger A Sci Total Environ; 2018 Feb; 615():1061-1069. PubMed ID: 29751409 [TBL] [Abstract][Full Text] [Related]
2. Development and Characterization of PCE-to-Ethene Dechlorinating Microcosms with Contaminated River Sediment. Lee J; Lee TK J Microbiol Biotechnol; 2016 Jan; 26(1):120-9. PubMed ID: 26502734 [TBL] [Abstract][Full Text] [Related]
3. Combined chemical and microbiological degradation of tetrachloroethene during the application of Carbo-Iron at a contaminated field site. Vogel M; Nijenhuis I; Lloyd J; Boothman C; Pöritz M; Mackenzie K Sci Total Environ; 2018 Jul; 628-629():1027-1036. PubMed ID: 30045527 [TBL] [Abstract][Full Text] [Related]
4. Identification of TCE and PCE sorption and biodegradation parameters in a sandy aquifer for fate and transport modelling: batch and column studies. Kret E; Kiecak A; Malina G; Nijenhuis I; Postawa A Environ Sci Pollut Res Int; 2015 Jul; 22(13):9877-88. PubMed ID: 25647491 [TBL] [Abstract][Full Text] [Related]
5. Multi-method assessment of the intrinsic biodegradation potential of an aquifer contaminated with chlorinated ethenes at an industrial area in Barcelona (Spain). Blázquez-Pallí N; Rosell M; Varias J; Bosch M; Soler A; Vicent T; Marco-Urrea E Environ Pollut; 2019 Jan; 244():165-173. PubMed ID: 30326388 [TBL] [Abstract][Full Text] [Related]
6. Dual carbon-chlorine stable isotope investigation of sources and fate of chlorinated ethenes in contaminated groundwater. Wiegert C; Aeppli C; Knowles T; Holmstrand H; Evershed R; Pancost RD; Macháčková J; Gustafsson Ö Environ Sci Technol; 2012 Oct; 46(20):10918-25. PubMed ID: 22989309 [TBL] [Abstract][Full Text] [Related]
7. Isotopic effects of PCE induced by organohalide-respiring bacteria. Leitner S; Berger H; Gorfer M; Reichenauer TG; Watzinger A Environ Sci Pollut Res Int; 2017 Nov; 24(32):24803-24815. PubMed ID: 28913587 [TBL] [Abstract][Full Text] [Related]
8. Reductive dechlorination of tetrachloroethene in marine sediments: Biodiversity and dehalorespiring capabilities of the indigenous microbes. Matturro B; Presta E; Rossetti S Sci Total Environ; 2016 Mar; 545-546():445-52. PubMed ID: 26748009 [TBL] [Abstract][Full Text] [Related]
9. Variations in expression of carbon isotope fractionation of chlorinated ethenes during biologically enhanced PCE dissolution close to a source zone. Morrill PL; Sleep BE; Seepersad DJ; McMaster ML; Hood ED; LeBron C; Major DW; Edwards EA; Lollar BS J Contam Hydrol; 2009 Nov; 110(1-2):60-71. PubMed ID: 19818530 [TBL] [Abstract][Full Text] [Related]
10. Biostimulation of indigenous communities for the successful dechlorination of tetrachloroethene (perchloroethylene)-contaminated groundwater. Patil SS; Adetutu EM; Aburto-Medina A; Menz IR; Ball AS Biotechnol Lett; 2014 Jan; 36(1):75-83. PubMed ID: 24101252 [TBL] [Abstract][Full Text] [Related]
11. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes. Palau J; Marchesi M; Chambon JC; Aravena R; Canals À; Binning PJ; Bjerg PL; Otero N; Soler A Sci Total Environ; 2014 Mar; 475():61-70. PubMed ID: 24419287 [TBL] [Abstract][Full Text] [Related]
12. Organohalide Respiration with Chlorinated Ethenes under Low pH Conditions. Yang Y; Cápiro NL; Marcet TF; Yan J; Pennell KD; Löffler FE Environ Sci Technol; 2017 Aug; 51(15):8579-8588. PubMed ID: 28665587 [TBL] [Abstract][Full Text] [Related]
13. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools. Badin A; Broholm MM; Jacobsen CS; Palau J; Dennis P; Hunkeler D J Contam Hydrol; 2016 Sep; 192():1-19. PubMed ID: 27318432 [TBL] [Abstract][Full Text] [Related]
14. Distribution of carbonaceous matter in lithofacies: impacts on HOC sorption nonlinearity. Kalinovich I; Allen-King RM; Thomas K J Contam Hydrol; 2012 May; 133():84-93. PubMed ID: 22525739 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical transformation of an aged tetrachloroethylene contamination in realistic aquifer settings. Hyldegaard BH; Jakobsen R; Ottosen LM Chemosphere; 2020 Mar; 243():125340. PubMed ID: 31760284 [TBL] [Abstract][Full Text] [Related]
16. Nonideal transport of contaminants in heterogeneous porous media: 10. Impact of co-solutes on sorption by porous media with low organic-carbon contents. Brusseau ML; Schnaar G; Johnson GR; Russo AE Chemosphere; 2012 Nov; 89(11):1302-6. PubMed ID: 22717163 [TBL] [Abstract][Full Text] [Related]
17. Effectiveness of stimulating PCE reductive dechlorination: a step-wise approach. Ni Z; Smit M; Grotenhuis T; van Gaans P; Rijnaarts H J Contam Hydrol; 2014 Aug; 164():209-18. PubMed ID: 24995946 [TBL] [Abstract][Full Text] [Related]
18. Competition for sorption and degradation of chlorinated ethenes in batch zero-valent iron systems. Dries J; Bastiaens L; Springael D; Agathos SN; Diels L Environ Sci Technol; 2004 May; 38(10):2879-84. PubMed ID: 15212263 [TBL] [Abstract][Full Text] [Related]
19. Stratification of chlorinated ethenes natural attenuation in an alluvial aquifer assessed by hydrochemical and biomolecular tools. Němeček J; Dolinová I; Macháčková J; Špánek R; Ševců A; Lederer T; Černík M Chemosphere; 2017 Oct; 184():1157-1167. PubMed ID: 28672697 [TBL] [Abstract][Full Text] [Related]
20. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. He F; Zhao D; Paul C Water Res; 2010 Apr; 44(7):2360-70. PubMed ID: 20106501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]