These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29751430)

  • 1. Tree-ring formation as an indicator of forest capacity to adapt to the main threats of environmental changes in Lithuania.
    Augustaitis A; Augustaitienė I; Baugarten M; Bičenkienė S; Girgždienė R; Kulbokas G; Linkevičius E; Marozas V; Mikalajūnas M; Mordas G; Mozgeris G; Petrauskas E; Pivoras A; Šidlauskas G; Ulevičius V; Vitas A; Matyssek R
    Sci Total Environ; 2018 Feb; 615():1247-1261. PubMed ID: 29751430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of ambient ozone to Scots pine defoliation and reduced growth in the Central European forests: a Lithuanian case study.
    Augustaitis A; Bytnerowicz A
    Environ Pollut; 2008 Oct; 155(3):436-45. PubMed ID: 18378053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests.
    Ostonen I; Lõhmus K; Helmisaari HS; Truu J; Meel S
    Tree Physiol; 2007 Nov; 27(11):1627-34. PubMed ID: 17669752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Did the ambient ozone affect stem increment of Scots Pines (Pinus sylvestris L.) on territories under regional pollution load? Step III of Lithuanian studies.
    Augustaitis A; Augustaitiene I; Cinga G; Mazeika J; Deltuvas R; Juknys R; Vitas A
    ScientificWorldJournal; 2007 Mar; 7 Suppl 1():58-66. PubMed ID: 17450281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of changing climate on the productivity of Norway spruce dominant stands with a mixture of Scots pine and birch in relation to water availability in southern and northern Finland.
    Ge ZM; Kellomäki S; Peltola H; Zhou X; Wang KY; Väisänen H
    Tree Physiol; 2011 Mar; 31(3):323-38. PubMed ID: 21436231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of ambient ozone to changes in Scots pine defoliation. Step II of Lithuanian studies.
    Augustaitis A; Augustaitiene I; Kliucius A; Girgzdiene R; Sopauskiene D
    ScientificWorldJournal; 2007 Mar; 7 Suppl 1():47-57. PubMed ID: 17450280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex imprint of air pollution in the basal area increments of three European tree species.
    Oulehle F; Kolář T; Rybníček M; Hruška J; Büntgen U; Trnka M
    Sci Total Environ; 2024 Nov; 951():175858. PubMed ID: 39209174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands.
    Helmisaari HS; Derome J; Nöjd P; Kukkola M
    Tree Physiol; 2007 Oct; 27(10):1493-504. PubMed ID: 17669739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of soil and air temperature on CO2 exchange and net biomass accumulation in Norway spruce, Scots pine and silver birch seedlings.
    Pumpanen J; Heinonsalo J; Rasilo T; Villemot J; Ilvesniemi H
    Tree Physiol; 2012 Jun; 32(6):724-36. PubMed ID: 22345325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Levels of selected trace elements in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula L.), and Norway maple (Acer platanoides L.) in an urbanized environment.
    Kosiorek M; Modrzewska B; Wyszkowski M
    Environ Monit Assess; 2016 Oct; 188(10):598. PubMed ID: 27696092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased spruce tree growth in Central Europe since 1960s.
    Cienciala E; Altman J; Doležal J; Kopáček J; Štěpánek P; Ståhl G; Tumajer J
    Sci Total Environ; 2018 Apr; 619-620():1637-1647. PubMed ID: 29122345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests.
    Helmisaari HS; Ostonen I; Lõhmus K; Derome J; Lindroos AJ; Merilä P; Nöjd P
    Tree Physiol; 2009 Mar; 29(3):445-56. PubMed ID: 19203968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevation-dependent tree growth response to climate in a natural Scots pine/downy birch forest in northern Sweden.
    Fassl M; Aakala T; Östlund L
    Plant Environ Interact; 2024 Apr; 5(2):e10140. PubMed ID: 38562245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are N and S deposition altering the mineral composition of Norway spruce and Scots pine needles in Finland?
    Luyssaert S; Sulkava M; Raitio H; Hollmén J
    Environ Pollut; 2005 Nov; 138(1):5-17. PubMed ID: 15967552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tree-ring analysis for the assessment of anthropogenic changes and trends.
    Juknys R; Stravinskiene V; Vencloviene J
    Environ Monit Assess; 2002 Jul; 77(1):81-97. PubMed ID: 12139077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The GenTree Platform: growth traits and tree-level environmental data in 12 European forest tree species.
    Opgenoorth L; Dauphin B; Benavides R; Heer K; Alizoti P; Martínez-Sancho E; Alía R; Ambrosio O; Audrey A; Auñón F; Avanzi C; Avramidou E; Bagnoli F; Barbas E; Bastias CC; Bastien C; Ballesteros E; Beffa G; Bernier F; Bignalet H; Bodineau G; Bouic D; Brodbeck S; Brunetto W; Buchovska J; Buy M; Cabanillas-Saldaña AM; Carvalho B; Cheval N; Climent JM; Correard M; Cremer E; Danusevičius D; Del Caño F; Denou JL; di Gerardi N; Dokhelar B; Ducousso A; Eskild Nilsen A; Farsakoglou AM; Fonti P; Ganopoulos I; García Del Barrio JM; Gilg O; González-Martínez SC; Graf R; Gray A; Grivet D; Gugerli F; Hartleitner C; Hollenbach E; Hurel A; Issehut B; Jean F; Jorge V; Jouineau A; Kappner JP; Kärkkäinen K; Kesälahti R; Knutzen F; Kujala ST; Kumpula TA; Labriola M; Lalanne C; Lambertz J; Lascoux M; Lejeune V; Le-Provost G; Levillain J; Liesebach M; López-Quiroga D; Meier B; Malliarou E; Marchon J; Mariotte N; Mas A; Matesanz S; Meischner H; Michotey C; Milesi P; Morganti S; Nievergelt D; Notivol E; Ostreng G; Pakull B; Perry A; Piotti A; Plomion C; Poinot N; Pringarbe M; Puzos L; Pyhäjärvi T; Raffin A; Ramírez-Valiente JA; Rellstab C; Remi D; Richter S; Robledo-Arnuncio JJ; San Segundo S; Savolainen O; Schueler S; Schneck V; Scotti I; Semerikov V; Slámová L; Sønstebø JH; Spanu I; Thevenet J; Tollefsrud MM; Turion N; Vendramin GG; Villar M; von Arx G; Westin J; Fady B; Myking T; Valladares F; Aravanopoulos FA; Cavers S
    Gigascience; 2021 Mar; 10(3):. PubMed ID: 33734368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meteorological factors and air pollution in Lithuanian forests: possible effects on tree condition.
    Ozolincius R; Stakenas V; Serafinaviciute B
    Environ Pollut; 2005 Oct; 137(3):587-95. PubMed ID: 16005769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forest vulnerability to extreme climatic events in Romanian Scots pine forests.
    Sidor CG; Camarero JJ; Popa I; Badea O; Apostol EN; Vlad R
    Sci Total Environ; 2019 Aug; 678():721-727. PubMed ID: 31078863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking the contents of hydrophobic PAHs with the canopy water storage capacity of coniferous trees.
    Anna KI; Emanuel G; Anna SR; Błońska E; Lasota J; Łagan S
    Environ Pollut; 2018 Nov; 242(Pt B):1176-1184. PubMed ID: 30118907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current and future drought vulnerability for three dominant boreal tree species.
    Aldea J; Dahlgren J; Holmström E; Löf M
    Glob Chang Biol; 2024 Jan; 30(1):e17079. PubMed ID: 38273579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.