These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 29751502)

  • 21. PDE3 inhibition by C-type natriuretic peptide-induced cGMP enhances cAMP-mediated signaling in both non-failing and failing hearts.
    Meier S; Andressen KW; Aronsen JM; Sjaastad I; Hougen K; Skomedal T; Osnes JB; Qvigstad E; Levy FO; Moltzau LR
    Eur J Pharmacol; 2017 Oct; 812():174-183. PubMed ID: 28697992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Establishment of beta-adrenergic modulation of L-type Ca2+ current in the early stages of cardiomyocyte development.
    Maltsev VA; Ji GJ; Wobus AM; Fleischmann BK; Hescheler J
    Circ Res; 1999 Feb; 84(2):136-45. PubMed ID: 9933244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PDE4 and mAKAPβ are nodal organizers of β2-ARs nuclear PKA signalling in cardiac myocytes.
    Bedioune I; Lefebvre F; Lechêne P; Varin A; Domergue V; Kapiloff MS; Fischmeister R; Vandecasteele G
    Cardiovasc Res; 2018 Sep; 114(11):1499-1511. PubMed ID: 29733383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Imaging of PDE2- and PDE3-Mediated cGMP-to-cAMP Cross-Talk in Cardiomyocytes.
    Pavlaki N; Nikolaev VO
    J Cardiovasc Dev Dis; 2018 Jan; 5(1):. PubMed ID: 29367582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of cAMP compartmentation in cardiac myocytes: experimental and computational approaches to understanding.
    Harvey RD; Clancy CE
    J Physiol; 2021 Oct; 599(20):4527-4544. PubMed ID: 34510451
    [TBL] [Abstract][Full Text] [Related]  

  • 26. cAMP microdomains and L-type Ca2+ channel regulation in guinea-pig ventricular myocytes.
    Warrier S; Ramamurthy G; Eckert RL; Nikolaev VO; Lohse MJ; Harvey RD
    J Physiol; 2007 May; 580(Pt.3):765-76. PubMed ID: 17289786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. cAMP signaling microdomains and their observation by optical methods.
    Calebiro D; Maiellaro I
    Front Cell Neurosci; 2014; 8():350. PubMed ID: 25389388
    [TBL] [Abstract][Full Text] [Related]  

  • 28. cAMP/PKA signaling compartmentalization in cardiomyocytes: Lessons from FRET-based biosensors.
    Ghigo A; Mika D
    J Mol Cell Cardiol; 2019 Jun; 131():112-121. PubMed ID: 31028775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epigenetic Regulation of Phosphodiesterases 2A and 3A Underlies Compromised β-Adrenergic Signaling in an iPSC Model of Dilated Cardiomyopathy.
    Wu H; Lee J; Vincent LG; Wang Q; Gu M; Lan F; Churko JM; Sallam KI; Matsa E; Sharma A; Gold JD; Engler AJ; Xiang YK; Bers DM; Wu JC
    Cell Stem Cell; 2015 Jul; 17(1):89-100. PubMed ID: 26095046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes.
    Richards M; Lomas O; Jalink K; Ford KL; Vaughan-Jones RD; Lefkimmiatis K; Swietach P
    Cardiovasc Res; 2016 Jun; 110(3):395-407. PubMed ID: 27089919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studying GPCR/cAMP pharmacology from the perspective of cellular structure.
    Wright PT; Schobesberger S; Gorelik J
    Front Pharmacol; 2015; 6():148. PubMed ID: 26236239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Compartmentalized cAMP Signaling Associated With Lipid Raft and Non-raft Membrane Domains in Adult Ventricular Myocytes.
    Agarwal SR; Gratwohl J; Cozad M; Yang PC; Clancy CE; Harvey RD
    Front Pharmacol; 2018; 9():332. PubMed ID: 29740315
    [No Abstract]   [Full Text] [Related]  

  • 33. Imaging alterations of cardiomyocyte cAMP microdomains in disease.
    Froese A; Nikolaev VO
    Front Pharmacol; 2015; 6():172. PubMed ID: 26379548
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Role of cyclic nucleotide phosphodiesterases in the cAMP compartmentation in cardiac cells].
    Mika D; Leroy J; Vandecasteele G; Fischmeister R
    Biol Aujourdhui; 2012; 206(1):11-24. PubMed ID: 22463992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resolution of cAMP signals in three-dimensional microdomains using novel, real-time sensors.
    Karpen JW; Rich TC
    Proc West Pharmacol Soc; 2004; 47():1-5. PubMed ID: 15633600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. BIN1 regulates dynamic t-tubule membrane.
    Fu Y; Hong T
    Biochim Biophys Acta; 2016 Jul; 1863(7 Pt B):1839-47. PubMed ID: 26578114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Localized cAMP-dependent signaling mediates beta 2-adrenergic modulation of cardiac excitation-contraction coupling.
    Zhou YY; Cheng H; Bogdanov KY; Hohl C; Altschuld R; Lakatta EG; Xiao RP
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1611-8. PubMed ID: 9321856
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Compartmentation of cAMP signaling in cardiac myocytes: a computational study.
    Iancu RV; Jones SW; Harvey RD
    Biophys J; 2007 May; 92(9):3317-31. PubMed ID: 17293406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thyroid and Glucocorticoid Hormones Promote Functional T-Tubule Development in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes.
    Parikh SS; Blackwell DJ; Gomez-Hurtado N; Frisk M; Wang L; Kim K; Dahl CP; Fiane A; Tønnessen T; Kryshtal DO; Louch WE; Knollmann BC
    Circ Res; 2017 Dec; 121(12):1323-1330. PubMed ID: 28974554
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.