These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29751508)

  • 41. A general strategy for synthesizing high-coercivity L1
    Lei W; Yu Y; Yang W; Feng M; Li H
    Nanoscale; 2017 Sep; 9(35):12855-12861. PubMed ID: 28849847
    [TBL] [Abstract][Full Text] [Related]  

  • 42. FePt@CoS(2) yolk-shell nanocrystals as a potent agent to kill HeLa cells.
    Gao J; Liang G; Zhang B; Kuang Y; Zhang X; Xu B
    J Am Chem Soc; 2007 Feb; 129(5):1428-33. PubMed ID: 17263428
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Controlled co-deposition of FePt nanoparticles embedded in MgO: a detailed investigation of structure and electronic and magnetic properties.
    D'Addato S; Grillo V; di Bona A; Luches P; Frabboni S; Valeri S; Lupo P; Casoli F; Albertini F
    Nanotechnology; 2013 Dec; 24(49):495703. PubMed ID: 24231177
    [TBL] [Abstract][Full Text] [Related]  

  • 44. FePt nanoparticles as a potential X-ray activated chemotherapy agent for HeLa cells.
    Zheng Y; Tang Y; Bao Z; Wang H; Ren F; Guo M; Quan H; Jiang C
    Int J Nanomedicine; 2015; 10():6435-44. PubMed ID: 26604740
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reduction of ordering temperature of self-assembled FePt nanoparticles by addition of Au and Ag.
    Gao Y; Zhang XW; Qu S; You JB; Yin ZG; Chen NF
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10548-52. PubMed ID: 22408945
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In situ x-ray reflectivity and grazing incidence x-ray diffraction study of L 1(0) ordering in (57)Fe/Pt multilayers.
    Raghavendra Reddy V; Gupta A; Gome A; Leitenberger W; Pietsch U
    J Phys Condens Matter; 2009 May; 21(18):186002. PubMed ID: 21825468
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of Cu on the Improvement of Magnetic Properties and Structure of
    Zhang L; Du X; Lu H; Gao D; Liu H; Lin Q; Cao Y; Xie J; Hu W
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922619
    [No Abstract]   [Full Text] [Related]  

  • 48. Controlled synthesis and anomalous magnetic properties of relatively monodisperse CoO nanocrystals.
    Zhang HT; Chen XH
    Nanotechnology; 2005 Oct; 16(10):2288-94. PubMed ID: 20818009
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Direct one-pot synthesis of glutathione capped hydrophilic FePt-CdS nanoprobe for efficient bimodal imaging application.
    Jha DK; Saikia K; Chakrabarti S; Bhattacharya K; Varadarajan KS; Patel AB; Goyary D; Chattopadhyay P; Deb P
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():415-424. PubMed ID: 28024604
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel aqueous nano-scaled formulations of oleic acid stabilized hydrophobic superparamagnetic iron oxide nanocrystals.
    Belete A; Maeder K
    Drug Dev Ind Pharm; 2013 Feb; 39(2):186-96. PubMed ID: 22416888
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Self-assembled FePt nanocrystals with large coercivity: reduction of the fcc-to-L1(0) ordering temperature.
    Varanda LC; Jafelicci M
    J Am Chem Soc; 2006 Aug; 128(34):11062-6. PubMed ID: 16925422
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In situ investigation of ordering phase transformations in FePt magnetic nanoparticles.
    Wittig JE; Bentley J; Allard LF
    Ultramicroscopy; 2017 May; 176():218-232. PubMed ID: 28011114
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Magnetic Properties of FePt Nanoparticles Prepared by a Micellar Method.
    Gao Y; Zhang X; Yin Z; Qu S; You J; Chen N
    Nanoscale Res Lett; 2009 Sep; 5(1):1-6. PubMed ID: 20652124
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hexagonal-to-cubic phase transformation in composite thin films induced by FePt nanoparticles located at PS/PEO interfaces.
    Aissou K; Fleury G; Pecastaings G; Alnasser T; Mornet S; Goglio G; Hadziioannou G
    Langmuir; 2011 Dec; 27(23):14481-8. PubMed ID: 22007622
    [TBL] [Abstract][Full Text] [Related]  

  • 55. FePt nanoparticles-decorated graphene oxide nanosheets as enhanced peroxidase mimics for sensitive response to H
    Chen M; Yang B; Zhu J; Liu H; Zhang X; Zheng X; Liu Q
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():610-620. PubMed ID: 29853131
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineered biocompatible nanoparticles for in vivo imaging applications.
    Chen S; Wang L; Duce SL; Brown S; Lee S; Melzer A; Cuschieri A; André P
    J Am Chem Soc; 2010 Oct; 132(42):15022-9. PubMed ID: 20919679
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Size-Tailored Biocompatible FePt Nanoparticles for Dual
    Slabu I; Wiemer K; Steitz J; Liffmann R; Mues B; Eisold S; Caumanns T; Mayer J; Kuhl CK; Schmitz-Rode T; Simon U
    Langmuir; 2019 Aug; 35(32):10424-10434. PubMed ID: 31306025
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis and Characteristics of FePt Nanoparticle Films Under In Situ-Applied Magnetic Field.
    Qian X; Gao MY; Li AD; Zhou XY; Liu XJ; Cao YQ; Li C; Wu D
    Nanoscale Res Lett; 2016 Dec; 11(1):325. PubMed ID: 27401088
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A fluorescent magnetic nanoalloy--Lanthanon-doped FePt:RE.
    Wen M; Zhao W; Zhang T; Zhu Y; Wang Y; Wu Q
    J Colloid Interface Sci; 2008 Jun; 322(1):143-51. PubMed ID: 18400231
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tuning the Electrocatalytic Oxygen Reduction Reaction Activity of Pt-Co Nanocrystals by Cobalt Concentration with Atomic-Scale Understanding.
    Lee JD; Jishkariani D; Zhao Y; Najmr S; Rosen D; Kikkawa JM; Stach EA; Murray CB
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26789-26797. PubMed ID: 31283175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.