These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29751590)

  • 1. Construction and Functionality of a Ceramic Resonant Pressure Sensor for Operation at Elevated Temperatures.
    Sadl M; Bradesko A; Belavic D; Bencan A; Malic B; Rojac T
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29751590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of the Ferroelectric Ceramic Bismuth Titanate as an Ultrasonic Transducer for High Temperatures and Nuclear Radiation.
    Reinhardt BT; Tittmann BR
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doping effects of CuO additives on the properties of low-temperature-sintered PMnN-PZT-based piezoelectric ceramics and their applications on surface acoustic wave devices.
    Tsai CC; Chu SY; Lu CH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):660-8. PubMed ID: 19411224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A harsh environment-oriented wireless passive temperature sensor realized by LTCC technology.
    Tan Q; Luo T; Xiong J; Kang H; Ji X; Zhang Y; Yang M; Wang X; Xue C; Liu J; Zhang W
    Sensors (Basel); 2014 Mar; 14(3):4154-66. PubMed ID: 24594610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-performance LC wireless passive pressure sensor fabricated using low-temperature co-fired ceramic (LTCC) technology.
    Li C; Tan Q; Xue C; Zhang W; Li Y; Xiong J
    Sensors (Basel); 2014 Dec; 14(12):23337-47. PubMed ID: 25490593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase transition temperatures and piezoelectric properties of (Bi(1/2)Na(1/2))TiO3- and (Bi(1/2)K(1/2))TiO3-based bismuth perovskite lead-free ferroelectric ceramics.
    Takenaka T; Nagata H; Hiruma Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1595-612. PubMed ID: 19686975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Passive Wireless Temperature Sensor for Harsh Environment Applications.
    Wang Y; Jia Y; Chen Q; Wang Y
    Sensors (Basel); 2008 Dec; 8(12):7982-7995. PubMed ID: 27873971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piezoelectric Characteristics of 0.55Pb(Ni
    Kang M; Kang LH
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31818045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Ceramic Diffusion Bonding Method for Passive LC High-Temperature Pressure Sensor.
    Li C; Sun B; Xue Y; Xiong J
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30110982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber-optic Fabry-Perot pressure sensor based on low-temperature co-fired ceramic technology for high-temperature applications.
    Liu J; Jia P; Zhang H; Tian X; Liang H; Hong Y; Liang T; Liu W; Xiong J
    Appl Opt; 2018 May; 57(15):4211-4215. PubMed ID: 29791395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in lead-free piezoelectric materials for sensors and actuators.
    Aksel E; Jones JL
    Sensors (Basel); 2010; 10(3):1935-54. PubMed ID: 22294907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Insertable Passive LC Pressure Sensor Based on an Alumina Ceramic for In Situ Pressure Sensing in High-Temperature Environments.
    Xiong J; Li C; Jia P; Chen X; Zhang W; Liu J; Xue C; Tan Q
    Sensors (Basel); 2015 Aug; 15(9):21844-56. PubMed ID: 26334279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Wireless Passive LC Resonant Sensor Based on LTCC under High-Temperature/Pressure Environments.
    Qin L; Shen D; Wei T; Tan Q; Luo T; Zhou Z; Xiong J
    Sensors (Basel); 2015 Jul; 15(7):16729-39. PubMed ID: 26184207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State-of-the-Art and Practical Guide to Ultrasonic Transducers for Harsh Environments Including Temperatures above 2120 °F (1000 °C) and Neutron Flux above 10
    Tittmann BR; Batista CFG; Trivedi YP; Lissenden Iii CJ; Reinhardt BT
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31683921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relaxation-Related Piezoelectric and Dielectric Behavior of Bi(Mg,Ti)O
    Park MY; Ji JH; Koh JH
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31067773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface mapping of field-induced piezoelectric strain at elevated temperature employing full-field interferometry.
    Stevenson T; Quast T; Bartl G; Schmitz-Kempen T; Weaver PM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jan; 62(1):88-96. PubMed ID: 25585393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lead-Free Piezoelectric Acceleration Sensor Built Using a (K,Na)NbO
    Lee MK; Kim BH; Lee GJ
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of (K, Na)NbO
    Ichihashi K; Tsukamura K; Kimura T; Kasashima T; Yamazaki M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Jan; 71(1):46-55. PubMed ID: 37665698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piezoelectric enhancement under negative pressure.
    Kvasov A; McGilly LJ; Wang J; Shi Z; Sandu CS; Sluka T; Tagantsev AK; Setter N
    Nat Commun; 2016 Jul; 7():12136. PubMed ID: 27396411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Highly Sensitive, Reliable, and High-Temperature-Resistant Flexible Pressure Sensor Based on Ceramic Nanofibers.
    Fu M; Zhang J; Jin Y; Zhao Y; Huang S; Guo CF
    Adv Sci (Weinh); 2020 Sep; 7(17):2000258. PubMed ID: 32995117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.