These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29751620)

  • 41. Effect of protein intake on lifelong changes in renal function of rats unilaterally nephrectomized at young age.
    Provoost AP; De Keijzer MH; Molenaar JC
    J Lab Clin Med; 1989 Jul; 114(1):19-26. PubMed ID: 2738445
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adaptation of Na+-H+ exchange in renal microvillus membrane vesicles. Role of dietary protein and uninephrectomy.
    Harris RC; Seifter JL; Brenner BM
    J Clin Invest; 1984 Dec; 74(6):1979-87. PubMed ID: 6511911
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional impairment in chronic renal disease. II. Studies of acid excretion.
    Gonick HC; Kleeman CR; Rubini ME; Maxwell MH
    Nephron; 1969; 6(1):28-49. PubMed ID: 5772763
    [No Abstract]   [Full Text] [Related]  

  • 44. Reducing the Dietary Acid Load: How a More Alkaline Diet Benefits Patients With Chronic Kidney Disease.
    Passey C
    J Ren Nutr; 2017 May; 27(3):151-160. PubMed ID: 28117137
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of dietary protein and calorie restriction in clinically normal cats and in cats with surgically induced chronic renal failure.
    Adams LG; Polzin DJ; Osborne CA; O'Brien TD
    Am J Vet Res; 1993 Oct; 54(10):1653-62. PubMed ID: 8250390
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Renal salt wasting in mice lacking NHE3 Na+/H+ exchanger but not in mice lacking NHE2.
    Ledoussal C; Lorenz JN; Nieman ML; Soleimani M; Schultheis PJ; Shull GE
    Am J Physiol Renal Physiol; 2001 Oct; 281(4):F718-27. PubMed ID: 11553519
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of certain metabolic disorders on the hydrogen ion excretion by the kidney under osmotic load.
    Szereszewska H; Jasiński K; Wachowiak A; Adamiak S
    Pol Med J; 1969; 8(2):294-303. PubMed ID: 5772788
    [No Abstract]   [Full Text] [Related]  

  • 48. Renal reserve: a functional view of glomerular filtration rate.
    Bosch JP
    Semin Nephrol; 1995 Sep; 15(5):381-5. PubMed ID: 8525139
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of the kidney in compensating the alkaline tide, electrolyte load, and fluid balance disturbance associated with feeding in the freshwater rainbow trout, Oncorhynchus mykiss.
    Bucking C; Landman MJ; Wood CM
    Comp Biochem Physiol A Mol Integr Physiol; 2010 May; 156(1):74-83. PubMed ID: 20060058
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Periparturient effects of feeding a low dietary cation-anion difference diet on acid-base, calcium, and phosphorus homeostasis and on intravenous glucose tolerance test in high-producing dairy cows.
    Grünberg W; Donkin SS; Constable PD
    J Dairy Sci; 2011 Feb; 94(2):727-45. PubMed ID: 21257041
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Renal acid-base titration studies in infants with and without metabolic acidosis in the postneonatal period.
    Svenningsen NW
    Pediatr Res; 1974 Jun; 8(6):659-72. PubMed ID: 4857677
    [No Abstract]   [Full Text] [Related]  

  • 52. [Treatment of metabolic acidosis in patients with chronic kidney disease (CKD)].
    Dębowska M; Przedlacki J
    Wiad Lek; 2017; 70(6 pt 2):1197-1200. PubMed ID: 29533913
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NaHCO(3) and KHCO(3) ingestion rapidly increases renal electrolyte excretion in humans.
    Lindinger MI; Franklin TW; Lands LC; Pedersen PK; Welsh DG; Heigenhauser GJ
    J Appl Physiol (1985); 2000 Feb; 88(2):540-50. PubMed ID: 10658021
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of dietary manipulations on glomerular filtration rate of mice offspring of nephrectomized mothers.
    Aberbukh Z; Weissgarten J; Berman S; Cohn M; Chaim S; Horne T; Golik A; Cohen N; Modai D
    Am J Nephrol; 1993; 13(3):190-3. PubMed ID: 8213929
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dietary acid load and renal function have varying effects on blood acid-base status and exercise performance across age and sex.
    Hietavala EM; Stout JR; Frassetto LA; Puurtinen R; Pitkänen H; Selänne H; Suominen H; Mero AA
    Appl Physiol Nutr Metab; 2017 Dec; 42(12):1330-1340. PubMed ID: 28825967
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of endothelin-1 in renal regulation of acid-base equilibrium in acidotic humans.
    Pallini A; Hulter HN; Muser J; Krapf R
    Am J Physiol Renal Physiol; 2012 Oct; 303(7):F991-9. PubMed ID: 22859405
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of sodium bicarbonate administration on renal function of horses.
    Rivas LJ; Hinchcliff KW; Kohn CW; Sams RA; Chew DJ
    Am J Vet Res; 1997 Jun; 58(6):664-71. PubMed ID: 9185977
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of chronic hypotonic volume expansion on the renal regulation of acid-base equilibrium.
    Lowance DC; Garfinkel HB; Mattern WD; Schwartz WB
    J Clin Invest; 1972 Nov; 51(11):2928-40. PubMed ID: 5080418
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Performance of the chronic kidney disease-epidemiology study equations for estimating glomerular filtration rate before and after nephrectomy.
    Lane BR; Demirjian S; Weight CJ; Larson BT; Poggio ED; Campbell SC
    J Urol; 2010 Mar; 183(3):896-901. PubMed ID: 20083272
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Renal regulation of acid-base equilibrium during chronic administration of mineral acid.
    De Sousa RC; Harrington JT; Ricanati ES; Shelkrot JW; Schwartz WB
    J Clin Invest; 1974 Feb; 53(2):465-76. PubMed ID: 11344560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.