These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29751621)

  • 1. Investigative Method for Fatigue Crack Propagation Based on a Small Time Scale.
    Wang H; Zhang W; Zhang J; Dai W; Zhao Y
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29751621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of Precipitate Microstructure Affecting Fatigue Behavior of 7020 Aluminum Alloy.
    Shan Z; Liu S; Ye L; Li Y; He C; Chen J; Tang J; Deng Y; Zhang X
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32707847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Fatigue Life Prediction Method Based on Strain Intensity Factor.
    Zhang W; Liu H; Wang Q; He J
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue Crack Arrest Induced by Localized Compressive Deformation.
    Barragán ER; Ambriz RR; Frutos JA; García CJ; Gómora CM; Jaramillo D
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative in Situ SEM High Cycle Fatigue: The Critical Role of Oxygen on Nanoscale-Void-Controlled Nucleation and Propagation of Small Cracks in Ni Microbeams.
    Barrios A; Gupta S; Castelluccio GM; Pierron ON
    Nano Lett; 2018 Apr; 18(4):2595-2602. PubMed ID: 29489378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Cycle Fatigue in the Transmission Electron Microscope.
    Bufford DC; Stauffer D; Mook WM; Syed Asif SA; Boyce BL; Hattar K
    Nano Lett; 2016 Aug; 16(8):4946-53. PubMed ID: 27351706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation.
    Shiraiwa T; Briffod F; Enoki M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue Characteristics of 7050-T7451 Aluminum Alloy Friction Stir Welding Joints and the Stress Ratio Effect.
    Zhu H; Lacidogna G; Deng C; Gong B; Liu F
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Specimen Thickness and Stress Intensity Factor Range on Plasticity-Induced Fatigue Crack Closure in A7075-T6 Alloy.
    Masuda K; Ishihara S; Oguma N
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Fatigue Crack Growth in Biomedical Alloy Ti-27Nb.
    Amjad M; Badshah S; Rafique AF; Adil Khattak M; Khan RU; Abdullah Harasani WI
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32429420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain.
    Sun T; Qin L; Xie Y; Zheng Z; Xie C; Huang Z
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. About the Role of Interfaces on the Fatigue Crack Propagation in Laminated Metallic Composites.
    Pohl PM; Kümmel F; Schunk C; Serrano-Munoz I; Markötter H; Göken M; Höppel HW
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34069283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redistribution of Welding Residual Stresses of Crack Tip Opening Displacement Specimen by Local Compression.
    Kim YG; Song KH; Lee DH; Joo SM
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1705-1708. PubMed ID: 29448648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Mechanism of Creep during Crack Propagation of a Superalloy under Fatigue-Creep-Environment Interactions.
    Wang M; Du J; Deng Q
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33020419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-field Strain Measurements for Microstructurally Small Fatigue Crack Propagation Using Digital Image Correlation Method.
    Malitckii E; Remes H; Lehto P; Bossuyt S
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30735166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A DIC-Based Study on Fatigue Damage Evolution in Pre-Corroded Aluminum Alloy 2024-T4.
    Song H; Liu C; Zhang H; Leen SB
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30423895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Artificial Neural Network-Based Algorithm for Evaluation of Fatigue Crack Propagation Considering Nonlinear Damage Accumulation.
    Zhang W; Bao Z; Jiang S; He J
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research on the Evolution Law Physical Short Fatigue Crack and Tip Deformation Fields during Crack Closure Process of the Q&P Steel.
    Shang H; Lin Z; Gao H; Shan X; Zhan J
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue Fracture Analysis on 2524 Aluminum Alloy with the Influence of Creep-Aging Forming Processes.
    Ma L; Liu C; Ma M; Wang Z; Wu D; Liu L; Song M
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Study on Fatigue Crack Propagation for Friction Stir Welded Plate of 7N01 Al-Zn-Mg Alloy by EBSD.
    Liu W; Wu D; Duan S; Wang T; Zou Y
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.