BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

660 related articles for article (PubMed ID: 29751847)

  • 61. Distinct histone H3-H4 binding modes of sNASP reveal the basis for cooperation and competition of histone chaperones.
    Liu CP; Jin W; Hu J; Wang M; Chen J; Li G; Xu RM
    Genes Dev; 2021 Dec; 35(23-24):1610-1624. PubMed ID: 34819355
    [TBL] [Abstract][Full Text] [Related]  

  • 62. All roads lead to chromatin: multiple pathways for histone deposition.
    Li Q; Burgess R; Zhang Z
    Biochim Biophys Acta; 2013; 1819(3-4):238-46. PubMed ID: 24459726
    [TBL] [Abstract][Full Text] [Related]  

  • 63. HIRA orchestrates a dynamic chromatin landscape in senescence and is required for suppression of neoplasia.
    Rai TS; Cole JJ; Nelson DM; Dikovskaya D; Faller WJ; Vizioli MG; Hewitt RN; Anannya O; McBryan T; Manoharan I; van Tuyn J; Morrice N; Pchelintsev NA; Ivanov A; Brock C; Drotar ME; Nixon C; Clark W; Sansom OJ; Anderson KI; King A; Blyth K; Adams PD
    Genes Dev; 2014 Dec; 28(24):2712-25. PubMed ID: 25512559
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Histone chaperones cooperate to mediate Mef2-targeted transcriptional regulation during skeletal myogenesis.
    Yang JH; Choi JH; Jang H; Park JY; Han JW; Youn HD; Cho EJ
    Biochem Biophys Res Commun; 2011 Apr; 407(3):541-7. PubMed ID: 21414300
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The H3.3 chaperone Hira complex orchestrates oocyte developmental competence.
    Smith R; Susor A; Ming H; Tait J; Conti M; Jiang Z; Lin CJ
    Development; 2022 Mar; 149(5):. PubMed ID: 35112132
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Continuous Histone Replacement by Hira Is Essential for Normal Transcriptional Regulation and De Novo DNA Methylation during Mouse Oogenesis.
    Nashun B; Hill PW; Smallwood SA; Dharmalingam G; Amouroux R; Clark SJ; Sharma V; Ndjetehe E; Pelczar P; Festenstein RJ; Kelsey G; Hajkova P
    Mol Cell; 2015 Nov; 60(4):611-25. PubMed ID: 26549683
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Subunits of the histone chaperone CAF1 also mediate assembly of protamine-based chromatin.
    Doyen CM; Moshkin YM; Chalkley GE; Bezstarosti K; Demmers JA; Rathke C; Renkawitz-Pohl R; Verrijzer CP
    Cell Rep; 2013 Jul; 4(1):59-65. PubMed ID: 23810557
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes.
    Inoue A; Zhang Y
    Nat Struct Mol Biol; 2014 Jul; 21(7):609-16. PubMed ID: 24908396
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Histone H4 acetylation is essential to proceed from a histone- to a protamine-based chromatin structure in spermatid nuclei of Drosophila melanogaster.
    Awe S; Renkawitz-Pohl R
    Syst Biol Reprod Med; 2010 Feb; 56(1):44-61. PubMed ID: 20170286
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Histone storage and deposition in the early Drosophila embryo.
    Horard B; Loppin B
    Chromosoma; 2015 Jun; 124(2):163-75. PubMed ID: 25563491
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The histone chaperone Vps75 forms multiple oligomeric assemblies capable of mediating exchange between histone H3-H4 tetramers and Asf1-H3-H4 complexes.
    Hammond CM; Sundaramoorthy R; Larance M; Lamond A; Stevens MA; El-Mkami H; Norman DG; Owen-Hughes T
    Nucleic Acids Res; 2016 Jul; 44(13):6157-72. PubMed ID: 27036862
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The histone chaperone ASF1 localizes to active DNA replication forks to mediate efficient DNA replication.
    Schulz LL; Tyler JK
    FASEB J; 2006 Mar; 20(3):488-90. PubMed ID: 16396992
    [TBL] [Abstract][Full Text] [Related]  

  • 73. sNASP and ASF1A function through both competitive and compatible modes of histone binding.
    Bowman A; Koide A; Goodman JS; Colling ME; Zinne D; Koide S; Ladurner AG
    Nucleic Acids Res; 2017 Jan; 45(2):643-656. PubMed ID: 28123037
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The histone chaperones Nap1 and Vps75 bind histones H3 and H4 in a tetrameric conformation.
    Bowman A; Ward R; Wiechens N; Singh V; El-Mkami H; Norman DG; Owen-Hughes T
    Mol Cell; 2011 Feb; 41(4):398-408. PubMed ID: 21329878
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The Drosophila maternal gene sésame is required for sperm chromatin remodeling at fertilization.
    Loppin B; Berger F; Couble P
    Chromosoma; 2001 Nov; 110(6):430-40. PubMed ID: 11735001
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structure of the yeast histone H3-ASF1 interaction: implications for chaperone mechanism, species-specific interactions, and epigenetics.
    Antczak AJ; Tsubota T; Kaufman PD; Berger JM
    BMC Struct Biol; 2006 Dec; 6():26. PubMed ID: 17166288
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA.
    Adam S; Polo SE; Almouzni G
    Cell; 2013 Sep; 155(1):94-106. PubMed ID: 24074863
    [TBL] [Abstract][Full Text] [Related]  

  • 78. ASF1 binds to a heterodimer of histones H3 and H4: a two-step mechanism for the assembly of the H3-H4 heterotetramer on DNA.
    English CM; Maluf NK; Tripet B; Churchill ME; Tyler JK
    Biochemistry; 2005 Oct; 44(42):13673-82. PubMed ID: 16229457
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dominant mutants of the Saccharomyces cerevisiae ASF1 histone chaperone bypass the need for CAF-1 in transcriptional silencing by altering histone and Sir protein recruitment.
    Tamburini BA; Carson JJ; Linger JG; Tyler JK
    Genetics; 2006 Jun; 173(2):599-610. PubMed ID: 16582440
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Thioredoxin-dependent disulfide bond reduction is required for protamine eviction from sperm chromatin.
    Emelyanov AV; Fyodorov DV
    Genes Dev; 2016 Dec; 30(24):2651-2656. PubMed ID: 28031247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.