These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29751890)

  • 1. A Bayesian latent process spatiotemporal regression model for areal count data.
    Utazi CE; Afuecheta EO; Nnanatu CC
    Spat Spatiotemporal Epidemiol; 2018 Jun; 25():25-37. PubMed ID: 29751890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of spatio-temporal model to estimate burden of diseases, injuries and risk factors in Iran 1990 - 2013.
    Parsaeian M; Farzadfar F; Zeraati H; Mahmoudi M; Rahimighazikalayeh G; Navidi I; Niakan Kalhori SR; Mohammad K; Jafari Khaledi M
    Arch Iran Med; 2014 Jan; 17(1):28-33. PubMed ID: 24444062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hierarchical Bayesian approach to age-specific back-calculation of cancer incidence rates.
    Mezzetti M; Robertson C
    Stat Med; 1999 Apr; 18(8):919-33. PubMed ID: 10363331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling disease incidence data with spatial and spatio temporal dirichlet process mixtures.
    Kottas A; Duan JA; Gelfand AE
    Biom J; 2008 Feb; 50(1):29-42. PubMed ID: 17926327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal hurdle models for zero-inflated count data: Exploring trends in emergency department visits.
    Neelon B; Chang HH; Ling Q; Hastings NS
    Stat Methods Med Res; 2016 Dec; 25(6):2558-2576. PubMed ID: 24682266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian regression with spatiotemporal varying coefficients.
    Nieto-Barajas LE
    Biom J; 2020 Sep; 62(5):1245-1263. PubMed ID: 32048325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized hierarchical multivariate CAR models for areal data.
    Jin X; Carlin BP; Banerjee S
    Biometrics; 2005 Dec; 61(4):950-61. PubMed ID: 16401268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On identification in Bayesian disease mapping and ecological-spatial regression models.
    MacNab YC
    Stat Methods Med Res; 2014 Apr; 23(2):134-55. PubMed ID: 22573502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On fitting spatio-temporal disease mapping models using approximate Bayesian inference.
    Ugarte MD; Adin A; Goicoa T; Militino AF
    Stat Methods Med Res; 2014 Dec; 23(6):507-30. PubMed ID: 24713158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Poisson-lognormal conditional-autoregressive model for multivariate spatial analysis of pedestrian crash counts across neighborhoods.
    Wang Y; Kockelman KM
    Accid Anal Prev; 2013 Nov; 60():71-84. PubMed ID: 24036167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bayesian latent model with spatio-temporally varying coefficients in low birth weight incidence data.
    Choi J; Lawson AB; Cai B; Hossain MM; Kirby RS; Liu J
    Stat Methods Med Res; 2012 Oct; 21(5):445-56. PubMed ID: 22534428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data.
    Jun SC; George JS; Paré-Blagoev J; Plis SM; Ranken DM; Schmidt DM; Wood CC
    Neuroimage; 2005 Oct; 28(1):84-98. PubMed ID: 16023866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of malaria incidence in northern Namibia in 2009 using Bayesian conditional-autoregressive spatial-temporal models.
    Alegana VA; Atkinson PM; Wright JA; Kamwi R; Uusiku P; Katokele S; Snow RW; Noor AM
    Spat Spatiotemporal Epidemiol; 2013 Dec; 7():25-36. PubMed ID: 24238079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tutorial on spatio-temporal disease risk modelling in R using Markov chain Monte Carlo simulation and the CARBayesST package.
    Lee D
    Spat Spatiotemporal Epidemiol; 2020 Aug; 34():100353. PubMed ID: 32807395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of malaria risk, rates, and trends: A spatiotemporal approach for identifying and targeting sub-national areas of high and low burden.
    Lubinda J; Bi Y; Hamainza B; Haque U; Moore AJ
    PLoS Comput Biol; 2021 Mar; 17(3):e1008669. PubMed ID: 33647029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian hierarchical Poisson models with a hidden Markov structure for the detection of influenza epidemic outbreaks.
    Conesa D; Martínez-Beneito MA; Amorós R; López-Quílez A
    Stat Methods Med Res; 2015 Apr; 24(2):206-23. PubMed ID: 21873301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A process convolution model for crash count data on a network.
    Rezaee H; Schmidt AM; Stipancic J; Labbe A
    Accid Anal Prev; 2022 Nov; 177():106823. PubMed ID: 36115078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian modelling of inseparable space-time variation in disease risk.
    Knorr-Held L
    Stat Med; 2000 Sep 15-30; 19(17-18):2555-67. PubMed ID: 10960871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colorectal cancer mortality in Mato Grosso, Brazil: Spatiotemporal trends.
    Alves CMM; Souza VGB; Bastos RR
    Geospat Health; 2020 Jun; 15(1):. PubMed ID: 32575967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. JAGS model specification for spatiotemporal epidemiological modelling.
    Lope DJ; Demirhan H
    Spat Spatiotemporal Epidemiol; 2024 Jun; 49():100645. PubMed ID: 38876555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.