These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29752052)

  • 21. The impact of a systematic reduction in shoe-floor friction on heel contact walking kinematics-- A gait simulation approach.
    Mahboobin A; Cham R; Piazza SJ
    J Biomech; 2010 May; 43(8):1532-9. PubMed ID: 20170922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coefficient of friction testing parameters influence the prediction of human slips.
    Iraqi A; Cham R; Redfern MS; Beschorner KE
    Appl Ergon; 2018 Jul; 70():118-126. PubMed ID: 29866300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Required friction during overground walking is lower among obese compared to non-obese older men, but does not differ with obesity among women.
    Arena SL; Garman CR; Nussbaum MA; Madigan ML
    Appl Ergon; 2017 Jul; 62():77-82. PubMed ID: 28411741
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Late-cueing of gait tasks on an uneven brick surface impacts coordination and center of mass control in older adults.
    Dixon PC; Jacobs JV; Dennerlein JT; Schiffman JM
    Gait Posture; 2018 Sep; 65():143-148. PubMed ID: 30558921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of load carrying on required coefficient of friction.
    Seo JS; Kim S
    Technol Health Care; 2019; 27(S1):15-22. PubMed ID: 31045523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship between hamstring activation rate and heel contact velocity: factors influencing age-related slip-induced falls.
    Lockhart TE; Kim S
    Gait Posture; 2006 Aug; 24(1):23-34. PubMed ID: 16112575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Curvilinear walking elevates fall risk and modulates slip and compensatory step attributes after unconstrained human slips.
    Rasmussen CM; Mun S; Ouattas A; Walski A; Curtze C; Hunt NH
    J Exp Biol; 2024 Mar; 227(6):. PubMed ID: 38456285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterizing the shoe-rung friction requirements during ladder climbing.
    Martin ER; Pliner EM; Beschorner KE
    J Biomech; 2020 Jan; 99():109507. PubMed ID: 31780121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The quality of turning in Parkinson's disease: a compensatory strategy to prevent postural instability?
    Mellone S; Mancini M; King LA; Horak FB; Chiari L
    J Neuroeng Rehabil; 2016 Apr; 13():39. PubMed ID: 27094039
    [TBL] [Abstract][Full Text] [Related]  

  • 30. During roof-to ladder transitions, walk-through extensions modify required friction direction.
    Griffin SC; Williams V; Vidic N; Beschorner KE
    J Biomech; 2023 Oct; 159():111780. PubMed ID: 37669589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Effect of Different Turn Speeds on Whole-Body Coordination in Younger and Older Healthy Adults.
    Khobkhun F; Hollands M; Richards J
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923838
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Turning behavior in healthy older adults: Is there a preference for step versus spin turns?
    Akram SB; Frank JS; Chenouri S
    Gait Posture; 2010 Jan; 31(1):23-6. PubMed ID: 19765996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting slips and falls considering required and available friction.
    Hanson JP; Redfern MS; Mazumdar M
    Ergonomics; 1999 Dec; 42(12):1619-33. PubMed ID: 10643404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Asymmetrical slip propensity: required coefficient of friction.
    Seo JS; Kim S
    J Neuroeng Rehabil; 2013 Jul; 10():84. PubMed ID: 23902896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of transverse shear force on the required coefficient of friction for level walking.
    Chang WR; Chang CC; Matz S
    Hum Factors; 2011 Oct; 53(5):461-73. PubMed ID: 22046720
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of foot/ground interaction during stair negotiation and level walking in young and older women.
    Hamel KA; Okita N; Bus SA; Cavanagh PR
    Ergonomics; 2005 Jun; 48(8):1047-56. PubMed ID: 16147420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Balance Control Through Trunk Movement During Square and Semicircular Turns on Gait Velocity, Center of Mass Acceleration, and Energy Expenditure in Older Adults.
    Shin SS; An DH; Yoo WG
    PM R; 2016 Oct; 8(10):953-961. PubMed ID: 26972362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gait parameters as predictors of slip severity in younger and older adults.
    Moyer BE; Chambers AJ; Redfern MS; Cham R
    Ergonomics; 2006 Mar; 49(4):329-43. PubMed ID: 16690563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling the stochastic nature of the available coefficient of friction at footwear-floor interfaces.
    Gragg J; Klose E; Yang J
    Ergonomics; 2017 Jul; 60(7):977-984. PubMed ID: 27592564
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fall risk during opposing stance perturbations among healthy adults and chronic stroke survivors.
    Patel PJ; Bhatt T
    Exp Brain Res; 2018 Feb; 236(2):619-628. PubMed ID: 29279981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.